• Title/Summary/Keyword: carpospore release

Search Result 3, Processing Time 0.018 seconds

A Study on Carpospore Release Induction Method of Agarophyton vermiculophyllum (홍조류 꼬시래기(Agarophyton vermiculophyllum)의 과포자방출 유도 방법에 대한 연구)

  • Choi, Han Gil
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.225-231
    • /
    • 2020
  • The aim of this study was to examine optimal induction method for carpospore release from Agarophyton vermiculophyllum cystocarps for seedling production. We tested the effects of environmental factors on carpospore release by using five different induction methods; spontaneous, desiccation, low temperature, desiccation+low temperature, and osmotic shock. Also, carpospores release was estimated at three temperatures (20, 25, and 30℃), and then under combinations of three day lengths (8, 12, and 16h) and two irradiances (30 and 60 μmol photons m-2 s-1), after pretreatment at desiccation+low temperature for 2 hr. The number of carpospores released was between 113 ~ 682 spores /cystocarp/day and it was maximal in the desiccation+low temperature treatment. Optimal environmental conditions for carpospore release of A. vermiculophyllum were 25℃, 16 h, and 60 μmol photons m-2 s-1. The present results suggest that massive carpospores for seedling production of A. vermiculophyllum could be obtained under a combination of 25℃, 16 h, and 60 μmol photons m-2 s-1 after pretreatment in the desiccation+low temperature.

Effects of Light, Desiccation and Salinity for the Spore Discharge of Gracilaria verrucosa (Rhodophyta) in Korea

  • Kim Young Sik;Choi Han Gil;Nam Ki Wan
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.4
    • /
    • pp.257-260
    • /
    • 2001
  • The effects of light, desiccation and salinity on the discharge of spores in Korean agarophyte, Gracilaria verrucosa were studied. Among the examined factors, light after darkness was the most effective for spore discharge. The maximum release of tetraspores was induced at 24 h after the treatment. Desiccation also seems to be conductive to the release of tetraspores. However, its effect, as in treatment of distilled water for salinity, was hardly found in induction of carpospore discharge. This may suggest that spore discharge in this alga is primarily related with photoperiodic rhythm. Also it appears that the amount of light energy received by fertile thalli also significantly affects to the spore release, considering relationship between the amount of the discharged spores and the elapsed time after treatment.

  • PDF

Field and Culture Studies on the Growth and Reproduction of Campylaephora hypnaeoides (석묵 (Campylaephora hypnaeoides)의 생장과 성숙에 대한 야외 및 배양 연구)

  • Yoo, Hyun-Il;Kim, Ji-Hwan;Choi, Han-Gil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.3
    • /
    • pp.290-297
    • /
    • 2011
  • The phenology of Campylaephora hypnaeoides J. Agardh and optimal conditions for carpospore release, growth and reproduction were examined in the field and in the laboratory from January to December 2007. In the field population of C. hypnaeoides, approximately 50% of the plants were vegetative during the study period. Additionally, the percentages of carposporophytes and tetrasporophytes were maximal in April (37%) and June (57%), respectively. Maximum growth in plant length, dry weight, and hook number coincided with the tetrasporophyte reproductive peak in the field. In culture, carpospore release, sporeling growth and reproduction were affected by environmental factors such as daylength, temperature, and salinity. The liberation of carpospores was maximum under continuous light and at a combination of $15^{\circ}C$ and $10\;{\mu}mol$ photons $m^{-2}\;s^{-1}$. Maximum growth of tetrasporophyte sporelings occurred at a combination of $20\;{\mu}mol$ photons $m^{-2}\;s^{-1}$ of constant light and $25^{\circ}C$. However, the growth of gametophyte sporelings was maximal under $40\;{\mu}mol$ photons $m^{-2}\;s^{-1}$ of constant light and in a combination of $20^{\circ}C$ and 35 psu. The tetrasporophyte sporelings were grew faster than gametophytes, indicating that gametophyte- and tetrasporophyte-sporelings have different physiological responses to irradiance and temperature. Tetrasporangial branches and cystocarps of C. hypnaeoides were produced from carpospores and tetraspores within 1 month, and they were stimulated at high temperature and irradiance levels. In conclusion, C. hypnaeoides should be seeded using carpospores during early winter (November-December) because cystocarps are easily identified by fishermen, and tetrasporophytes grow faster than gametophytes.