• Title/Summary/Keyword: cell envelop damage

Search Result 2, Processing Time 0.018 seconds

Effect of Low Dose γ-Irradiation on the Fate and Cell Envelope of Bacillus cereus, Escherichia coli, and Salmonella Typhimurium

  • Mtenga, Adelard B.;Kassim, Neema;Lee, Won-Gyeong;Heo, Rok-Won;Shim, Won-Bo;Yoon, Yohan;Chung, Duck-Hwa
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.843-850
    • /
    • 2011
  • This study investigated the effect of low dose ${\gamma}$-irradiation on the damage of the cell envelopes and antibiotic sensitivity profiles of Bacillus cereus, Escherichia coli, and Salmonella Typhimurium. The bacteria suspension in tryptic soy broth was exposed to the ${\gamma}$-irradiation doses of 0, 1, 1.5, 3, and 5 kGy, and then stored at $0^{\circ}C$ for 24 h. A viability test, an antimicrobial sensitivity profile, and an electron microscopy were performed to observe the effects due to ${\gamma}$-irradiation treatment. B. cereus could survive the ${\gamma}$-irradiation up to 5 kGy while E. coli and S. Typhimurium were all deactivated at 1.5 kGy and 5 kGy, respectively. At 5 kGy, the cell count of B. cereus was significantly reduced, and the survived bacteria cells retained their important features. There were no significant changes observed in the antimicrobial sensitivity profile (p>0.05) for the recovered bacteria after irradiation treatment. Low dose ${\gamma}$-irradiation below 3 kGy was found to be insufficient to achieve decontamination of B. cereus and S. Typhimurium. Cell envelope damage and deactivation of different bacteria did not occur in the same manner; thus, deferent doses of ${\gamma}$-irradiation may be required for deactivation of different bacteria.

Ultrastructural observation of human neutrophils during apoptotic cell death triggered by Entamoeba histolytica

  • Sim, Sco-Bo;Kim, Kyeong-Ah;Yong, Tai-Soon;Park, Soon-Jung;Im, Kyung-Il;Shin, Myeong-Heon
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.4
    • /
    • pp.205-208
    • /
    • 2004
  • Neutrophils are important effector cells against protozoan extracellular parasite Entamoeba histolytica, which causes amoebic colitis and liver abscess in human beings. Apoptotic cell death of neutrophils is an important event in the resolution of inflammation and parasite's survival in vivo. This study was undertaken to investigate the ultrastructural aspects of apoptotic cells during neutrophil death triggered by Entamoeba histolytica. Isolated human neutrophils from the peripheral blood were incubated with or without live trophozoites of E. histolytica and examined by transmission electron microscopy (TEM). Neutrophils incubated with E. histolytica were observed to show apoptotic characteristics, such as compaction of the nuclear chromatin and swelling of the nuclear envelop. In contrast, neutrophils incubated in the absence of the amoeba had many protrusions of irregular cell surfaces and heterogenous nuclear chromatin. Therefore, it is suggested that Entamoeba-induced neutrophil apoptosis contribute to prevent unwanted tissue inflammation and damage in the amoeba-invaded lesions in vivo.