• Title/Summary/Keyword: cell loss probability

Search Result 93, Processing Time 0.025 seconds

A Practical Connection Admission Control Scheme in ATM Networks (ATM망에서 실용적 연결수락제어 기법)

  • Kang, Koo-Hong;Park, Sang-Jo
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.2
    • /
    • pp.181-187
    • /
    • 2002
  • Connection admission control(CAC), which decides whether or not to accept a new call request, is one of the most Important preventive congestion control techniques in asynchronous transfer mode(ATM) networks. To develop a practical CAC scheme, first we propose a "Modified Cell Loss Probability MP${\nu}"$, which is based on "Virtual Cell Loss Probability P${\nu}"$, taking into account mean burst duration of input traffic source and buffer size in ATM networks. MP${\nu}"$ computes more accurate cell loss probability than P${\nu}"$ without increasing computational complexity, since P${\nu}"$ is formulated simply form the maximum and the average cell rate of input traffic. P${\nu}"$ is overestimated as compared to the real cell loss probability when the mean burst duration is relatively small to the buffer capacity. Then, we Propose a CAC scheme, based on "Modified Virtual Bandwidth(MVB)" method, which may individualize the cell loss probabilities in heterogeneous traffic environments. For the proposed approach, we define the interference intensity to identify interferences between heterogeneous traffic sources and use it as well as MP${\nu}"$ to compute MVB. Our approach is well suitable for ATM networks since it provides high bandwidth utilization and guarantees simple and real time CAC computation for heterogeneous traffic environments.heterogeneous traffic environments.

Asymptotic cell loss decreasing rate in an ATM multiplexer loaded with heterogeneous on-off sources

  • Choi, Woo-Yong;Jun, Chi-Hyuck
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.543-546
    • /
    • 1996
  • Recently, some research has been done to analyze the asymptotic behavior of queue length distribution in ATM (Asynchronous Transfer Mode) multiplexer. In this paper, we relate this asymptotic behavior with the asymptotic behavior of decreasing cell loss probability when the buffer capacity is increased. We find with reasonable assumptions that the asymptotic rate of queue length distribution is the same as that of decreasing cell loss probability. Even under different priority control schemes and traffic classes, we find that this asymptotic rate of the individual cell loss probability of each traffic class does not change. As a consequence, we propose the upper bound of cell loss probability of each traffic class when a priority control scheme is employed. This bound is computationally feasible in a real-time. The numerical examples will be provided to validate this finding.

  • PDF

A Study on the Performance of Priority Mechanisms in ATM Multiplexer (ATM 멀티플렉서에서의 우선순위 메카니즘에 관한 연구)

  • 윤성호;박광채;이재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.779-792
    • /
    • 1993
  • In a switching node or an ATM multiplexer of the ATM network, a good bandwidth utilization can be achieved by the priority control using the 1-bit(Cell Loss priority) in ATM cell header. In this paper, the mixed mechanism is proposed to make up for shortcomings of existing space priority control mechanisms and to decrease the loss probability of high priority cell and its performance is analyzed about the cell loss probability. To estimate the performance of proposed mixed mechanism, its cell loss probability is compared with those of non-priority mechanism, push-out mechanism and partial buffer sharing mechanism. The cell loss probability is analyzed using a M/D/1/N modeling and a 2-state MMPP/D/1/N modeling and also comparison between two modelings is made. To verify this result of numerical analysis, the computer simulation is performed for each mechanism using the simulation language, SIMSRIPT II.5.

  • PDF

Performance Analysis of Output Queued Batcher-Banyan Switch for ATM Network (ATM 망에 적용 가능한 출력단 버퍼형 Batcher-Banyan 스위치의 성능분석)

  • Keol-Woo Yu;Kyou Ho Lee
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • This paper proposes an ATM switch architecture called Output Queued Batcher-Banyan switch (OQBBS). It consists of a Sorting Module, Expanding Module, and Output Queueing Modules. The principles of channel grouping and output queueing are used to increase the maximum throughput of an ATM switch. One distinctive feature of the OQBBS is that multiple cells can be simultaneously delivered to their desired output. The switch architecture is shown to be modular and easily expandable. The performance of the OQBBS in terms of throughput, cell delays, and cell loss rate under uniform random traffic condition is evaluated by computer simulation. The throughput and the average cell delay are close to the ideal performance behavior of a fully connected output queued crossbar switch. It is also shown that the OQBBS meets the cell loss probability requirement of $10^{-6}$.

  • PDF

Approximate Cell Loss Performance in ATM Networks: In Comparison with Exact Results

  • Lee, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.489-495
    • /
    • 2000
  • In this paper we propose an approximate method to estimate the cell loss probability(CLP) due to buffer overflow in ATM networks. The main idea is to relate the buffer capacity with the CLP target in explicit formula by using the approximate upper bound for the tail distribution of a queue. The significance of the proposition lies in the fact that we can obtain the expected CLP by using only the source traffic data represented by mean rate and its variance. To that purpose we consider the problem of estimating the cell loss measures form the statistical viewpoint such that the probability of cell loss due to buffer overflow does not exceed a target value. In obtaining the exact solution we use a typical matrix analytic method for GI/D/1B queue where B is the queue size. Finally, in order to investigate the accuracy of the result, we present both the approximate and exact results of the numerical computation and give some discussion.

  • PDF

System-Level Simulation for Efficient Displacement of Base Station Antennas for CDMA Uplink System in Urban Microcells (도심 마이크로셀에서 CDMA 시스템을 위한 효율적인 기지국 배치를 위한 모의실험)

  • Min, Seung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.517-525
    • /
    • 2008
  • In this paper, we cary out system level simulations to investigate the effect of cell shape(i.e., different base station displacements in the two directions defined by the street grid) on minimizing transmitter power, interference power, and blocking probability for CDMA system in urban microcellular environments. In urban microcell, path loss to the base station depends on the orientation of the street where the mobile is located. Interference from mobile stations to the base station in the reference cell is considered up to second tier. The wrap around method is used to include the second tier interference with realistic computational complexity without reducing the accuracy of interference calculations. The investigation shows that the transmitter power, interference power, and blocking probability in a cell can be reduced by proper selection of the efficient cell shape.

다수의 동일한 입력원을 갖는 ATM Multiplexer의 정확한 셀 손실 확률 분석

  • Choi, Woo-Yong;Jun, Chi-Hyuck
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.435-444
    • /
    • 1995
  • We propose a new approach to the calculation of the exact cells loss probability in a shared buffer ATM multiplexer, which is loaded with homogeneous discrete-time ON-OFF sources. Renewal cycles are identified in regard to the state of input sources and the buffer state on each renewal circle is modelled as a K(shared buffer size)-state Markov chain. We also analyze the behavior of queue build-up at the shared buffer whose distribution together with the steady-state probabilities of the Markov chain leads to the exact cell loss probability. Our approach to obtaining the exact cell loss probability seems to be more efficient than most of other existing ones since our underlying Markov chain has less number of states.

  • PDF

A Hybrid Simulation Technique for Cell Loss Probability Estimation of ATM Switch (ATM스위치의 쎌 손실율 추정을 위한 Hybrid 시뮬레이션 기법)

  • 김지수;최우용;전치혁
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.3
    • /
    • pp.47-61
    • /
    • 1996
  • An ATM switch must deal with various kinds of input sources having different traffic characteristics and it must guarantee very small value of cel loss probability, about 10$^{8}$ -10$^{12}$ , to deal with loss-sensitive traffics. In order to estimate such a rate event probability with simulation procedure, a variance reduction technique is essential for obtaining an appropriate level of precision with reduced cost. In this paper, we propose a hybrid simulation technique to achieve reduction of variance of cell loss probability estimator, where hybrid means the combination of analytical method and simulation procedure. A discrete time queueing model with multiple input sources and a finite shared buffer is considered, where the arrival process at an input source and a finite shared buffer is considered, where the arrival process at an input source is governed by an Interrupted Bernoulli Process and the service rate is constant. We deal with heterogeneous input sources as well as homogeneous case. The performance of the proposed hybrid simulation estimator is compared with those of the raw simulation estimator and the importance sampling estimator in terms of variance reduction ratios.

  • PDF

Performance analysis of priority control mechanism with cell transfer ratio and discard threshold in ATM switch (ATM 스위치에서 폐기 임계치를 가진 셀전송비율 제어형 우선순위 제어방식의 성능 분석)

  • 박원기;김영선;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.629-642
    • /
    • 1996
  • ATM switch handles the traffic for a wide range of appliations with different QOS(Quality-of-Service) requirements. In ATM switch, the priority control mechanism is needed to improve effectively the required QOS requirements. In this paper, we propose a priority control mechanism using the cell transfer ratio type and discard threshold in order to archive the cell loss probability requirement and the delay requirement of each service class. The service classes of our concern are the service class with high time priority(class 1) and the service class with high loss priority control mechanism, cells for two kind of service classes are stored and processed within one buffer. In case cells are stored in the buffer, cells for class 2 are allocated in the stored and processed within one buffer. In case cells are stored in the buffer, cells for class 2 are allocated in the shole range of the buffer and cells for class 1 are allocated up to discard threshold of the buffer. In case cells in the buffer are transmitted, one cell for class 1 is transmitted whenever the maximum K cells for class 2 are transmitted consecutively. We analyze the time delay and the loss probability for each class of traffic using Markov chain. The results show that the characteristics of the mean cell delay about cells for class 1 becomes better and that of the cell loss probability about cells for class 2 becomes better by selecting properly discard threshold of the buffer and the cell transfer ratio according to the condition of input traffic.

  • PDF

Performance Analysis of ATM Switch Using Dynamic Priority Control Mechanisms (동적 우선순위 제어방식을 사용한 ATM 스위치의 성능분석)

  • 박원기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.855-869
    • /
    • 1997
  • In this paper, we proposed two kids of dynamic priority control mechanisms controlling the cell service ratio in order to improve the QOS(Quality of Service). We also analyse theoretically the characteristics of cell loss probability and mean cell delay time by applying the proposed priority control mechanisms to ATM switch with output buffer. The proposed priority control mechanisms have the same principles of storing cells into buffer but the different principles of serving cells from buffer. The one is the control mechanism controlling the cell service ratio according to the relative cell occupancy ratio of buffer, the other is the control mechanism controlling the cell service ratio according to both the relative cell occupancy ratio of buffer and the average arrival rate. The two service classes of our concern are the delay sensitive class and the loss sensitive class. The analytical results show that the proposed control mechanisms are able to improve the QOS, the characteristics of cell loss probability and mean cell delay time, by selecting properly the relative cell occupancy ratio of buffer and the average arrival rate. conventional DLB algorithm does not support synchronous cells, but the proposed algorithm gives higher priority to synchronous cells. To reduce synchronous cell loss rate, the synchronous cell detector is used in the proposed algorithm. Synchronous cell detector detects synchronous cells, and passes them cells to the 2nd Leaky-Bucket. So it is similar to give higher priority to synchronous cells. In this paper, the proposed algorithm used audio/video traffic modeled by On/Off and Two-state MMPP, and simulated by SLAM II package. As simulation results, the proposed algorithm gets lower synchronous cell loss rate than the conventional DLB algorithms. The improved DLB algorithm for multimedia synchronization can be extended to any other cells which require higher priority.

  • PDF