• Title/Summary/Keyword: cellulosic ethanol

Search Result 47, Processing Time 0.029 seconds

Characteristics of Lignin Removal in Cellulosic Ethanol Production Process (셀룰로오스 에탄올 생산공정에서 리그닌의 제거특성)

  • Lee, You-Na;Lee, Seung-Bum;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.77-80
    • /
    • 2011
  • In this study, we measured changes in the lignin content of acidified lignocellulosic biomass such as rice straw, saw dust, chestnut shell and peanut hull and analyzed the conversion property to cellulosic ethanol. It turns out that the lignin content increases in chestnut shell, rice straw, saw dust, peanut hull order and the conversion property to cellulosic ethanol is superior in the reverse order. Thus, the removal of lignin by acidification is necessary. In addition, as the concentration of sulfuric acid increases, the lignin content decreases and the yield of cellulosic ethanol increased. The optimum concentration of sulfuric acid is 20 wt%.

Design of Pretreatment Process in Cellulosic Ethanol Production (목질계 셀룰로오스 에탄올 생산공정에서 전처리과정의 설계)

  • Kim, Hyungjin;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.511-514
    • /
    • 2015
  • A pretreatment process of cellulose decomposition to a monosaccharide plays an important role in the cellulosic ethanol production using the lignocellulosic biomass. In this study, a cellulosic ethanol was produced by using acidic hydrolysis and enzymatic saccharification process from the lignocellulosic biomass such as rice straw, sawdust, copying paper and newspaper. Three different pretreatment processes were compared; the acidic hydrolysis ($100^{\circ}C$, 1 h) using 10~30 wt% of sulfuric acid, the enzymatic saccharification (30 min) using celluclast ($55^{\circ}C$, pH = 5.0), AMG ($60^{\circ}C$, pH = 4.5), and spirizyme ($60^{\circ}C$, pH = 4.2) and also the hybrid process (enzymatic saccharification after acidic hydrolysis). The yield of cellulosic ethanol conversion with those pretreatment processes were obtained as the following order : hybrid process > acidic hydrolysis > enzymatic saccharification. The optimum fermentation time was proven to be two days in this work. The yield of cellulosic ethanol conversion using celluclast after the acidic hydrolysis with 20 wt% sulfuric acid were obtained as the following order : sawdust > rice straw > copying paper > newspaper when conducting enzymatic saccharification.

Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus

  • Im, Kyung Hoan;Nguyen, Trung Kien;Choi, Jaehyuk;Lee, Tae Soo
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.48-53
    • /
    • 2016
  • Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

Bioconversion of ethanol from various sugars and cellulosic materials by brown rot fungus Phaeolus schweinitzii

  • Yoon, Ki Nam;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • A novel brown rot fungus Phaeolus schweinitzii IUM 5048 was firstly used for ethanol production. It was found that this fungus produced ethanol with various sugars, such as glucose, mannose, galactose and cellobiose at 0.28, 0.22, 0.06, and 0.22 g of ethanol per g of sugar consumed, respectively. This fungus showed relatively good ethanol production from xylose at 0.23 g of ethanol per g of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.08 g of ethanol per g sugar). P. schweinitzii was capable of producing ethanol directly from rice straw and corn stalks at 0.11 g and 0.13 g of ethanol per g of substrates, respectively, when the fungus was cultured in a basal medium supplemented with 20 g/L rice straw or corn stalks. These results suggest that P. schweinitzii can hydrolyze cellulose or hemicellulose to fermentable sugars and convert them to ethanol simultaneously under oxygen limited condition.

Development of Transportation Bio-energy and Its Future (수송용 바이오에너지 개발과 미래)

  • Chung, Jay-H.;Kwon, Gi-Seok;Jang, Han-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Negative environmental consequences of fossil fuels and the concerns about their soaring prices have spurred the search for alternative energy sources. While other alternative energies-like solar, wind, geothermal, hydroelectric, and tidal-offer viable options for electricity generation, around 40% of total energy consumption requires liquid fuels like gasoline or diesel fuel. This is where bio-energy/biofuels is especially attractive, where they can serve as a practical alternative to oil. The production of liquid biofuels for transportation will depend upon a stable supply of large amount of inexpensive cellulosic biomass obtained on a sustainable basis. This paper reviewed development status of transportation bio-energy for vehicles, technical barriers to the production of cellulosic ethanol, and the global future of bio-diesel and ethanol production.

Isolation of Strains that Produce Ethanol Efficiently from Cellulosic Materials (섬유질 가수분해물로부터 효율적인 Ethanol 생산균주의 분리)

  • 고학룡;문종상;성낙계;심기환
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.319-324
    • /
    • 1991
  • Three strains able to efficiently produce ethanol from cellulosic hydrolysates were isolated from soil samples by enrichment culture in liquid saccharified wheat bran medium. The profiles of physiological and biochemical properties of two yeasts KM-09 and KM-402 and a bacterium Hg-225 were almost identical from those of Candida sp. and Klebsiella sp., respectively. Strains KM-09 and HG-225 used xylose and cellobiose as fermentable sugars, and HG-225 had a wide range of sugar utilization for ethanol fermentation. The optimal pH and temperature for growth of KM-09, KM-402 and HG-225 were 5.8, 5.6 and 6.8 and 32t, $30^{\circ}C$~ and $38^{\circ}C$, respectively. During the ethanol fermentation in saccharified wheat bran by the isolated strains, optimal temperature for ethanol production was more or less higher than those for growth, and addition of 0.2% (w/v) $MgSO_4$, into the medium enhanced ethanol productivity. Of the three strains ethanol content of KM-09 was the highest with about 2.3% (v/v), and ethanol production rate of HG-225 was faster than the others and maximum productivity was after 4 days. KM-09 (1.42% v/v) and HG-225 (1.05%, vlv) produced ethanol from 4% (wIv) xylose but growth rate was slower than on glucose. Otherwise KM-402 showed the highest ethanol productivity on glucose, but no ethanol was detected on xylose and cellobiose.

  • PDF

Cellulosic Ethanol as Renewable Alternative Fuel (신재생 대안 에너지로서의 셀룰로스 에탄올)

  • Cho, Woo-Suk;Chung, Yu-Hee;Kim, Bo-Kyung;Suh, Su-Jeoung;Koh, Wan-Soo;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.111-118
    • /
    • 2007
  • Global warming crisis due primarily to continued green house gas emission requires impending change to renewable alternative energy than continuously depending on exhausting fossil fuels. Bioenergy including biodiesel and bioethanol are considered good alternatives because of their renewable and sustainable nature. Bioethanol is currently being produced by using sucrose from sugar beet, grain starches or lignocellulosic biomass as sources of ethanol fermentation. However, grain production requires significant amount of fossil fuel inputs during agricultural practices, which means less competitive in reducing the level of green house gas emission. By contrast, cellulosic bioethanol can use naturally-growing, not-for-food biomass as a source of ethanol fermentation. In this respect, cellulosic ethanol than grain starch ethanol is considered a more appropriate as a alternative renewable energy. However, commercialization of cellulosic ethanol depends heavily on technology development. Processes such as securing enough biomass optimized for economic processing, pretreatment technology for better access of polymer-hydrolyzing enzymes, saccharification of recalcitrant lignocellulosic materials, and simultaneous fermentation of different sugars including 6-carbon glucose as well as 5-carbon xylose or arabinose waits for greater improvement in technologies. Although it seems to be a long way to go until commercialization, it should broadly benefit farmers with novel source of income, environment with greener and reduced level of global warming, and national economy with increased energy security. Mission-oriented strategies for cellulosic ethanol development participated by government funding agency and different disciplines of sciences and technologies should certainly open up a new era of renewable energy.

Isolation of cellulosic biomass degrading microorganisms from different sources for low cost biofuel production

  • Sheikh, M. Mominul Islam;Kim, Chul-Hwan;Lee, Ji-Yong;Yeasmin, Shabina;Park, Hyeon-Jin;Kim, Gyeong-Chul;Kim, Sung-Ho;Kim, Jae-Won
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.81-91
    • /
    • 2011
  • Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. Recently, a large amount of studies regarding the utilization of lignocellulosic biomass as a good feedstock for producing fuel ethanol is being carried out worldwide. The plant biomass is mainly composed of cellulose, hemicellulose and lignin. The main challenge in the conversion of biomass into ethanol is the complex, rigid and harsh structures which require efficient process and cost effective to break down. The isolation of microorganisms is one of the means for obtaining enzymes with properties suitable for industrial applications. For these reasons, crude cultures containing cellulosic biomass degrading microorganisms were isolated from rice field soil, cow farm soil and rotten rice straw from cow farm. Carboxymethyl cellulose (CMC), xylan and Avicel (microcrystalline cellulose) degradation zone of clearance on agar platefrom rice field soil resulted approximately at 25 mm, 24 mm and 22 mm respectively. As for cow farm soil, CMC, xylan and Avicel degradation clearancezone on agar plate resulted around at 24mm, 23mm and 21 mm respectively. Rotten rice straw from cow farm also resulted for CMC, xylan and Avicel degradation zone almost at 24 mm, 23 mm and 22 mm respectively. The objective of this study is to isolatebiomass degrading microbial strains having good efficiency in cellulose hydrolysis and observed the effects of different substrates (CMC, xylan and Avicel) on the production of cellulase enzymes (endo-glucanase, exo-glucanase, cellobiase, xylanase and avicelase) for producing low cost biofuel from cellulosic materials.

  • PDF

Production of Rice Straw Based Cellulosic Ethanol Using Acidic Saccharification (산당화과정을 이용한 볏짚으로부터 셀룰로스 에탄올의 제조)

  • Lee, Seung-Bum;Jung, Soo-Kyung;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.349-352
    • /
    • 2010
  • The production process of cellulosic ethanol from rice straw using acidic saccharification was studied in this experimental work. The hydration by ultrasonic energy and the acidic saccharification using 10~30 wt% of $H_2SO_4$ were performed as pretreatment processes. Also, 10~50 wt% of yeast for 3~6 days was used for fermentation process. The yield of cellulosic ethanol was decided in the fermentation process. The optimum pretreatment condition was 375W of ultrasonic power and 30 min of hydration time using 20 wt% of $H_2SO_4$ and 2 h of the acidic saccharification time. Finally, the optimum fermentation condition was at the condition of 30 wt% of yeast and 3 days of fermentation time.

Isolation of Mutant Yeast Strains having Resistance to 1-ethyl-3-methylimidazolium Acetate through a Directed Evolutionary Approach (유도적 돌연변이 유발 방법을 통한 1-ethyl-3-methylimidazolium acetate에 대해 내성을 갖는 돌연변이 효모 선별)

  • Lee, Yoo-Jin;Kwon, Deok-Ho;Park, Jae-Bum;Ha, Suk-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.51-56
    • /
    • 2017
  • Cellulosic biomass is a renewable source for biofuel production from non-edible biomass. An optimized pretreatment process is required for the efficient utilization of cellulosic biomass. Among various pretreatment processes, the use of ionic liquids has been reported recently. However, the residual ionic liquid after pretreatment acts as an inhibitor of microbial fermentation. Recently, we isolated mutant Saccharomyces cerevisiae strains resistant to the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) by using a directed evolutionary approach. When 3% [EMIM][Ac] was added to a medium containing 80 g/l of glucose, mutants D452-B2 and D452-S3 produced 35.6 g/l and 36.3 g/l of ethanol, respectively, for 18 h while the parental strain (S. cerevisiae D452-2) produced 1.3 g/l of ethanol. Thus, these mutant S. cerevisiae strains might prove advantageous when ionic liquids are used for biofuel production from cellulosic biomass.