• Title/Summary/Keyword: cement concrete pavement

Search Result 213, Processing Time 0.028 seconds

A Study on Evaluation of High Early Strength Concrete as Pavement Overlay Materials for Early Traffic Opening(2) (신속개방형 콘크리트 도로포장재의 설계를 위한 평가 연구(2))

  • 엄태선;임채용;유재상;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.233-238
    • /
    • 2001
  • In road Pavements, it is known that cement concrete pavement has superior durability, safety compared with asphalt pavement. But in repairing pavement, cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixed concrete because of rapid setting time, high slump loss and other restrictions. We aim to develope special cement and concrete developing 1 day strength of over 300 kg/$\textrm{cm}^2$ to open the road within one day and workable time is maintained over 1 hour that can be used as ready mixed concrete. In this study, we produced cement using rapid-hardening cement, Hauyne clinker, anhydride gypsum and accelerator and studied on its properties. The comperssive strength was over 400 kg/$\textrm{cm}^2$ and tensile at 1 day and workable time was maintained for over 1 hour.

  • PDF

Fundamental Properties of Limestone Powder Added Cement Environment-friendly Concrete for Concrete Pavement (석회석미분말을 함유한 친환경 시멘트콘크리트의 도로포장 적용을 위한 기초 연구)

  • Choi, Woo-Hyeon;Park, Cheol-Woo;Jung, Won-Kyong;Kim, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.37-49
    • /
    • 2012
  • PURPOSES : This study is to investigate the fundamental properties of limestone added cement concrete for application of pavement. METHODS : As the production of Portland cement causes environmental problems, engineers have sought more environment-friendly concrete construction materials. Limestone powder can be used for concrete as a partial replacement of Portland cement. One of the great applications of limestone powder added cement concrete might be a cement concrete pavement since the concrete pavement consumes massive quantity of Portland cement. Experimental variables were different replacement level of limestone powder by 0% to 25% with 5% increment. Before hardening of fresh concrete, setting time and plastic shrinkage characteristics were investigated in addition to other basic properties. Properties of hardened concrete included compressive, tensile and flexural strength as well as drying shrinkage. RESULTS : The addition of limestone powder did not significantly affect the properties of fresh concrete. Strength deceased as the replacement ratio increased and when the replacement ratio was greater than 10% decrease rate increased. CONCLUSIONS : It was found that the partial replacement of the limestone powder to cement in pavement materials can be positively considered as its mechanical properties show comparable performance to those normal concrete.

A Study on Design of High Early Strength Cement and Concrete for Road Way Pavements (신속개방형 콘크리트 도로포장재의 설계를 위한 실험실적 평가 연구)

  • 임채용;엄태선;신국재;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.295-300
    • /
    • 2001
  • In road pavements, it is known that cement concrete pavement has superior durability, safety in compared with asphalt concrete pavement. But in reparing pavement cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixied concrete because of rapid setting time, high slump loss and other restrictions. We aim to develope specific cement and concrete developing 1 day strength of over 300 kg/$cm^{2}$ to open the road within one day and workable time is maintained over 1 hour that can be used as ready mixed concrete. In this study, we Produced cement using rapid-hardening cement, Hauyne clinker, anhydride gypsum and accelerator and studied on its properties. The concrete strength was over 300 kg/$cm^{2}$ at 1 day and 550 kg/$cm^{2}$ at 28 day and workable time was maintained for over 1 hour.

  • PDF

A Study on the concrete pavement for early traffic opening day (콘크리트 도로포장의 조기개통에 관한 연구)

  • 임창덕;윤원곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.57-60
    • /
    • 1990
  • The purpose of this report is to study the traffic opening day of concrete pavement. For this purpose this paper studies on the propeties of various cement types which include the newly developed cement for the cement pavement regarding the resistance to the chemical attack caused by de-icing salt and the durability of the concrete pavement. Especially, traffic opening day of concrete pavement are discussed on site.

  • PDF

An Experimental Study on the Mix Properties of Concrete Pavement Incorporating Fly-Ash (플라이애쉬를 혼입한 콘크리트포장의 배합특성에 관한 실험적 연구)

  • Lee, Joo-Hyung;Choi, Seong-Yung;Yun, Kyong-Ku;Jung, Young-Hwa
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.313-322
    • /
    • 1997
  • As the weight of trucks increases, the need for concrete pavement also increases. Therefore, the addition of fly-ash may improve the properties of pavement concrete as well as recycle fly-ash. A full factorial experiment was performed using the primary variables, such as water-cement ratio, fly-ash substitution ratio, and maximum size of coarse aggregate, as a preliminary study for optimum mixture design for pavement concrete. The results of preliminary study indicates that the addition of fly-ash is the most important factor determining concrete strength, followed by the maximum size of coarse aggregate and water-cement ratio. It, also, shows the relative importance of fly-ash substitution ratio, compared to the water-cement ratio, and the interaction effects between the primary variables. Optimum mixture designs for pavement concrete incorporating fly-ash, that satisfied the target responses, were proposed in terms of fly-ash substitution ratio, water cement ratio and maximum size of coarse aggregate.

  • PDF

A Study and Evaluation of Super High Early Strength Concrete as Pavement Overlay Materials for Early Traffic Opening(3) (신속개방형 콘크리트 도로포장재의 설계를 위한 평가 연구(3))

  • 임채용;엄태선;유재상;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.607-612
    • /
    • 2002
  • In road pavements, it is known that cement concrete pavement has superior durability, safety compared. But in repairing pavement, cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixed concrete because of rapid setting time, high slump loss and other restrictions. We developed special cement developing 1 day strength of over 30.0N/mm$^2$ to open the road within 1 day and workable time is maintained over 1 hour so that it can be used as ready mixed concrete. We performed experimental overlay construction with the cement and evaluated the mechanical property and the durability. At curing temperature of 8-l8$^{\circ}C$,the flexural strength was 6.4N/mm$^2$at 1 day, so that the road can be open to traffic within 1 day. In durability test, the hardened concrete showed higher durability than Portland cement concrete.

  • PDF

A Study on the quality of High Early Strength Concrete as Whitetopping Materials (Whitetopping 포장재의 시험포설 및 시공품질에 대한 평가연구)

  • 임채용;엄태선;유재상;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.507-512
    • /
    • 2002
  • In road pavements, it is known that cement concrete pavement has superior durability. But in repairing pavement, cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixed concrete because of rapid setting time, high slump loss and other restrictions. We developed special cement developing 1 day strength of over 30.0N/$mm^2$ to open the road within 1 day and workable time is maintained over 1 hour so that it can be used as ready mixed concrete. We performed experimental overlay construction with concrete and evaluated the properties of the fresh and hardened concrete. The flexural strength was over 5.0N/$mm^2$ and the compressive strength was over 30N/$mm^2$ at 1 day. So it is thought that the road can be open to traffic within 1 day after placement.

  • PDF

A Field Application of Non-shrinkage Concrete Pavement using CSA Expansive Additive (CSA계 팽창재를 사용한 무수축콘크리트의 도로포장 현장적용 사례연구)

  • 이재한;송경환;최일규;김창률;민경소
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.183-188
    • /
    • 1997
  • From a viewpoint of construction cost and preserving management of pavement, a policy of domestic pavement was gradually spreaded concrete pavement rather than asphalt. But the use of concrete with ordinary portland cement has shortages, such as dry-shrinkage, low flexural strength, etc. In order to overcome these problems, the concrete pavement using CSA expansive additive (Non-Shrinkage Cement) was studied and carried out the fie이 application. As the results, we find out Non-Shrinkage Cement that was distinguished in short-term construction by increasing flexural strength, shrinkage compensating and low-heat evaluation compared with OPC concrete.

  • PDF

Fundamental Study on Optimum Mixing Proportion of Cement Concrete Pavement using Recycled Aggregate (순환골재를 활용한 포장용 시멘트콘크리트의 최적배합 도출을 위한 기초 연구)

  • Kim, Sueng Won;Kim, Yong Jae;Lee, Jang Yong;Lee, Hak Yong;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.105-113
    • /
    • 2016
  • OBJECTIVES : This study is to develop the optimum mixing proportions for cement concrete pavement with using recycled aggregates. METHODS : The mixture varied recycled coarse aggregates content from 50 % to 100 % to replace the natural coarse aggregates by weight. Tests for fundamental properties as a cement concrete pavement were conducted before and after hardening of the concrete. RESULTS : It was found that the variation in the amount of the recycled aggregate affected the compressive and flexural strength development, as well as the chloride ion penetration resistance. As the amount of the recycled aggregate content increased the compressive and flexural strength and the resistance to chloride ion penetration decreased. However, the resistance to freeze-thaw reaction was affected significantly. In addition, the gradation of the aggregate became worse and hence so did the coarseness factor as the recycled aggregate amount increased. CONCLUSIONS : The fundamental properties of the concrete with recycled aggregate does not seem to be appropriate when the recycled aggregate quality is not guaranteed up to a some level and its replacement ratio is over 50%. The optimized gradation of the aggregates should also be sought when the recycled aggregate is used for the cement concrete pavement materials.

Fatigue Characteristics of Soil-Cement Based Pavement (Soil-Cement 도로포장 기층의 피로특성 연구)

  • 오병환;이형준;이명규;양인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.273-277
    • /
    • 1993
  • Fitigue behavior of soil-cement based pavement due to repeatitive traffic loads is studied. Finite element method is employed to analyze the pavement system including base, subbase, and soil layers. The calculated stresses are then used to evaluate the fatigue life of a pavement system. For the study is needed to determine accurately the fatigue characteristic of various soil-cement systems.

  • PDF