• 제목/요약/키워드: centroid classifier

Search Result 15, Processing Time 0.102 seconds

Modifying linearly non-separable support vector machine binary classifier to account for the centroid mean vector

  • Mubarak Al-Shukeili;Ronald Wesonga
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.245-258
    • /
    • 2023
  • This study proposes a modification to the objective function of the support vector machine for the linearly non-separable case of a binary classifier yi ∈ {-1, 1}. The modification takes into account the position of each data item xi from its corresponding class centroid. The resulting optimization function involves the centroid mean vector, and the spread of data besides the support vectors, which should be minimized by the choice of hyper-plane β. Theoretical assumptions have been tested to derive an optimal separable hyperplane that yields the minimal misclassification rate. The proposed method has been evaluated using simulation studies and real-life COVID-19 patient outcome hospitalization data. Results show that the proposed method performs better than the classical linear SVM classifier as the sample size increases and is preferred in the presence of correlations among predictors as well as among extreme values.

Performance Comparison of Naive Bayesian Learning and Centroid-Based Classification for e-Mail Classification (전자메일 분류를 위한 나이브 베이지안 학습과 중심점 기반 분류의 성능 비교)

  • Kim, Kuk-Pyo;Kwon, Young-S.
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.10-21
    • /
    • 2005
  • With the increasing proliferation of World Wide Web, electronic mail systems have become very widely used communication tools. Researches on e-mail classification have been very important in that e-mail classification system is a major engine for e-mail response management systems which mine unstructured e-mail messages and automatically categorize them. In this research we compare the performance of Naive Bayesian learning and Centroid-Based Classification using the different data set of an on-line shopping mall and a credit card company. We analyze which method performs better under which conditions. We compared classification accuracy of them which depends on structure and size of train set and increasing numbers of class. The experimental results indicate that Naive Bayesian learning performs better, while Centroid-Based Classification is more robust in terms of classification accuracy.

Robust 2-D Object Recognition Using Bispectrum and LVQ Neural Classifier

  • HanSoowhan;woon, Woo-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.255-262
    • /
    • 1998
  • This paper presents a translation, rotation and scale invariant methodology for the recognition of closed planar shape images using the bispectrum of a contour sequence and the learning vector quantization(LVQ) neural classifier. The contour sequences obtained from the closed planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The higher order spectra based on third order cumulants is applied to tihs contour sample to extract fifteen bispectral feature vectors for each planar image. There feature vector, which are invariant to shape translation, rotation and scale transformation, can be used to represent two0dimensional planar images and are fed into a neural network classifier. The LVQ architecture is chosen as a neural classifier because the network is easy and fast to train, the structure is relatively simple. The experimental recognition processes with eight different hapes of aircraft images are presented to illustrate the high performance of this proposed method even the target images are significantly corrupted by noise.

  • PDF

A Contour Descriptors-Based Generalized Scheme for Handwritten Odia Numerals Recognition

  • Mishra, Tusar Kanti;Majhi, Banshidhar;Dash, Ratnakar
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.174-183
    • /
    • 2017
  • In this paper, we propose a novel feature for recognizing handwritten Odia numerals. By using polygonal approximation, each numeral is segmented into segments of equal pixel counts where the centroid of the character is kept as the origin. Three primitive contour features namely, distance (l), angle (${\theta}$), and arc-tochord ratio (r), are extracted from these segments. These features are used in a neural classifier so that the numerals are recognized. Other existing features are also considered for being recognized in the neural classifier, in order to perform a comparative analysis. We carried out a simulation on a large data set and conducted a comparative analysis with other features with respect to recognition accuracy and time requirements. Furthermore, we also applied the feature to the numeral recognition of two other languages-Bangla and English. In general, we observed that our proposed contour features outperform other schemes.

Active Selection of Label Data for Semi-Supervised Learning Algorithm (준감독 학습 알고리즘을 위한 능동적 레이블 데이터 선택)

  • Han, Ji-Ho;Park, Eun-Ae;Park, Dong-Chul;Lee, Yunsik;Min, Soo-Young
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.254-259
    • /
    • 2013
  • The choice of labeled data in semi-supervised learning algorithm can result in effects on the performance of the resultant classifier. In order to select labeled data required for the training of a semi-supervised learning algorithm, VCNN(Vector Centroid Neural Network) is proposed in this paper. The proposed selection method of label data is evaluated on UCI dataset and caltech dataset. Experiments and results show that the proposed selection method outperforms conventional methods in terms of classification accuracy and minimum error rate.

A Study on the Design of Classifier for Urine Analysis System (요분석 시스템의 분류기 설계에 관한 연구)

  • 전계록;김기련;예수영;김철한;정도운;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.193-201
    • /
    • 2003
  • In this paper, a classifier of urine analysis system was designed using preprocessing and fuzzy algorithm. Preprocessing were processed by normalizing data of strip using calibration curve composed of achromatic colors value and by calculating three stimulus. FUZZY classifier capable of analyzing a qualitative concentration of test items was composed of fuzzifier by gaussian shaped membership function, inference of MIN method, and defuzzifier of centroid method through verification by measuring standard solution and by classifying concentration classes. After tuning membership function according to relating standard solution with urinalysis sample, the possibility to adapt classifier designed for urine analysis system near a bed was verified as classifying measured urinalysis samples and observing classified result. Of all test items, experimental results showed a satisfactory agreement with test results of reference system.

Performance Improvement of Bearing Fault Diagnosis Using a Real-Time Training Method (실시간 학습 방법을 이용한 베어링 고장진단 성능 개선)

  • Cho, Yoon-Jeong;Kim, Jae-Young;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.4
    • /
    • pp.551-559
    • /
    • 2017
  • In this paper, a real-time training method to improve the performance of bearing fault diagnosis. The traditional bearing fault diagnosis cannot classify a condition which is not trained by the classifier. The proposed 4-step method trains and recognizes new condition in real-time, thereby it can classify the condition accurately. In the first step, we calculate the maximum distance value for each class by calculating a Euclidean distance between a feature vector of each class and a centroid of the corresponding class in the training information. In the second step, we calculate a Euclidean distance between a feature vector of new acquired data and a centroid of each class, and then compare with the allowed maximum distance of each class. In the third step, if the distance between a feature vector of new acquired data and a centroid of each class is larger than the allowed maximum distance of each class, we define that it is data of new condition and increase count of new condition. In the last step, if the count of new condition is over 10, newly acquired 10 data are assigned as a new class and then conduct re-training the classifier. To verify the performance of the proposed method, bearing fault data from a rotating machine was utilized.

Improving the Performance of SVM Text Categorization with Inter-document Similarities (문헌간 유사도를 이용한 SVM 분류기의 문헌분류성능 향상에 관한 연구)

  • Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.22 no.3 s.57
    • /
    • pp.261-287
    • /
    • 2005
  • The purpose of this paper is to explore the ways to improve the performance of SVM (Support Vector Machines) text classifier using inter-document similarities. SVMs are powerful machine learning systems, which are considered as the state-of-the-art technique for automatic document classification. In this paper text categorization via SVMs approach based on feature representation with document vectors is suggested. In this approach, document vectors instead of index terms are used as features, and vector similarities instead of term weights are used as feature values. Experiments show that SVM classifier with document vector features can improve the document classification performance. For the sake of run-time efficiency, two methods are developed: One is to select document vector features, and the other is to use category centroid vector features instead. Experiments on these two methods show that we can get improved performance with small vector feature set than the performance of conventional methods with index term features.

Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine (Support Vector Machine을 이용한 선에코 특성 분석 및 탐지 방법)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.665-670
    • /
    • 2014
  • A SVM is a kind of binary classifier in order to find optimal hyperplane which separates training data into two groups. Due to its remarkable performance, the SVM is applied in various fields such as inductive inference, binary classification or making predictions. Also it is a representative black box model; there are plenty of actively discussed researches about analyzing trained SVM classifier. This paper conducts a study on a method that is automatically detecting the line-shaped echoes, sun strobe echo and radial interference echo, using the SVM algorithm because the line-shaped echoes appear relatively often and disturb weather forecasting process. Using a spatial clustering method and corrected reflectivity data in the weather radar, the training data is made up with mean reflectivity, size, appearance, centroid altitude and so forth. With actual occurrence cases of the line-shaped echoes, the trained SVM classifier is verified, and analyzed its characteristics using the decision tree method.

Automated Classification of Audio Genre using Sequential Forward Selection Method

  • Lee Jong Hak;Yoon Won lung;Lee Kang Kyu;Park Kyu Sik
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.768-771
    • /
    • 2004
  • In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital signal processing approach. From the 20 second query audio file, 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS (Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we verify the superior performance of the SFS method that provides near $90{\%}$ success rate for the genre classification which means $10{\%}$-$20{\%}$ improvements over the previous methods

  • PDF