• Title/Summary/Keyword: ceramic ferrule

Search Result 16, Processing Time 0.028 seconds

Grinding Characteristic of ZrO$_2$ Ceramics Ferrule (지르코니아 세라믹스 페룰의 연삭 특성)

  • 이석우;최영재;김기환;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1911-1915
    • /
    • 2003
  • Today optical communication industry is developed; demand of optical communication part is increased. ZrO$_2$ ceramic ferrule is very significant part which determines transmission efficiency and quality of information in the optical communication part by connector of optical fibers. Being different from metal grinding, material removal through brittle fracture plays an important role in ZrO$_2$ ceramic grinding. Most of ZrO$_2$ ceramic ferrule processes are grinding which request high processing precision. Particularly, concentricity and cylindricity of inner and outer diameter are very important. The co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. Surface integrity of ZrO$_2$ ceramic ferrule is affected by grinding conditions, and equipment. In this study, surface integrity of workpiece according to such as a change of grinding wheel speed, feed rate, regulating wheel speed and grinding force is investigate to improve the concentricity and roundness of ZrO$_2$ ceramic ferrule from many experiments. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF

Finite Element Analysis of Grinding Stress for Fiber Optic Connector(Ceramic Ferrule) (유한요소법을 이용한 광통신용 페룰($ZrO_2$)의 연삭거동에 관한 해석적 연구)

  • Bae, K.S.;Suh, C.M.;Jung, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1064-1069
    • /
    • 2004
  • Ceramic ferrules which are major parts of the fiber optic connectors are requiring high precisions in grinding. After grinding, it is the problem that subsurface damages cannot be removed. The objective of this study was to analyze the grinding force and the associated stress generated in a ceramic ferrule during cylindrically external griding using finite element analysis(FEA). A two-dimensional finite element model was constructed with the grinding parameters and the mechanical properties of the ferrule as input variables. The size of the geometric model was the same with ceramic ferrule. The experimental results are investigated by SEM photograph and compared with the results from FEM. The result of FEA showed a good agreement with that of experiment.

  • PDF

Nondestructive Evaluation of the Flaw in a Ceramic Ferrule by Resonant Ultrasound Spectroscopy (공명초음파분광법을 이용한 페롤의 비파괴결함평가)

  • 김성훈;백경윤;김영남;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.108-117
    • /
    • 2004
  • In this paper, a measuring NDT(nondestructive testing) system using RUS(Resonant Ultrasound Spectroscopy) was built for nondestructive evaluation of the flaw in a ceramic Ferrule. The principle of RUS is that the mechanical resonant frequency of the materials depends on density, and the coefficient of elasticity. The RUS system is the measuring which is to exite specimen and to inspect the difference of natural frequency pattern between acceptable specimen and specimen which has some defects. RUS system is configured of spectrum analyzer, power amplifier, PZT sensor and support frame. For defect evaluation by the RUS, we performed to measure natural frequency of Ferrule, both acceptable and cracked. In the case of Ferrule, the resonant frequency of cracked-Ferrule existed to higher frequency band than acceptable-Ferrule.

광 커낵터용 세라믹 Ferrule가공기술 개발에 관한 연구

  • 이응숙;이성국;황경현;정명영;최태구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.18-22
    • /
    • 1992
  • This paper presents the process of manufacturing technology of ceramics ferrule for optical fiber connector. Precision zirconia ceramic ferrules is widely used for high performance and low cost single mode optical fiber connectors. To polish the hole of the zirconia ceramic ferrule, the wire lapping instrument is developed and the machining experiment is conducted. Through the centerless grinding using diamond wheel the surface roughness of zirconia ceramics ferrule is below the 1 .mu. m Rmax.

Evaluation of Grinding Machining Characteristics of $ZrO_2$ Ferrule Using the Taguchi Method (다구치 방법을 이용한 지르코니아 세라믹스 페룰의 연삭 가공 특성 평가)

  • 김기환;최영재;홍원표;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.516-519
    • /
    • 2004
  • As the optical communication industry is developed, the demand of optical communication part is increasing. ZrO$_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general ZrO$_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. And the co-axle grinding process of ZrO$_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. This paper deals with the analysis of the process parameters such as grinding wheel speed, grinding feedrate and regulating wheel speed as influential factors, on the concentricity and surface finish developed based on Taguchi's experimental design methods. Taguchi s tools such as orthogonal array, signal-to-noise ratio, factor effect analysis, etc. have been used for this purpose optimal condition has been found out. Thus, if possible be finding highly efficient and quality grinding conditions.

  • PDF

Development of Manufacturing Technology of Ceramics Ferrule for Optical Fiber Connector (광 커넥터용 세라믹 Ferrule 가공기술 개발에 관한 연구)

  • Lee, Eung-Suk;Lee, Seong-Guk;Hwang, Gyeong-Hyeon;Jeong, Myeong-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.67-72
    • /
    • 1992
  • This paper presents the process of manufacturing technology of ceramics ferrule for opitcal fiber connector. Precision zirconia ceramic ferrules is widely for high performance and low cost single mode optical fiber connectors. To polish the hole of the zirconia ceramic ferrule, the wire lapping instrument is developed and the machining experiment is conducted. Through the centerless grinding using diamond wheel the surface roughness of zirconia ceramics ferrule is below the 1$\mu$m Rmax.

  • PDF

Evaluation Method of Micro Crack in a Ceramic Ferrule by Resonant Ultrasound Spectroscopy (공명초음파법을 이용한 세라믹제 페롤의 미소 크랙 평가법)

  • Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.59-66
    • /
    • 2006
  • In this paper, we suggested an evaluation method of cracks in a ceramic product by resonant ultrasound spectroscopy. For experiment, we manufactured nondestructive measurement system by resonant ultrasound spectroscopy and measured resonance frequencies of acceptable and cracked ferrules. The evaluation criterion of ferrule is based on the comparison of resonance frequencies between acceptable and cracked-ferrule. The criterion value that defined by suggested formula is 2. By using the criterion, it is possible to evaluate both acceptable and cracked-ferrule.

The Grinding Machining Characteristics of $ZrO_2$ Ceramics Ferrule in the Chucking Alignment Error (척킹 평형 정렬 오차에 따른 지르코니아 세라믹스 페룰의 연삭 가공 특성)

  • Lee S.W.;Kim G.H.;Choi Y.J.;Choi H.Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.19-22
    • /
    • 2005
  • As the optical communication industry is developed, the demand of optical communication part is increasing. $ZrO_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. And the co-axle grinding process of $ZrO_2$ ceramic ferrule is to make its concentricity all of uniform before centerless grinding. When co-axle grinding of ferrule supported by two pin, pin chucking alignment accuracy is very important. This paper deals with the analysis of the chucking alignment experiment with parallel error on the micro feeding equipment. Thus, if possible be finding highly good the chucking alignment of two pin.

  • PDF

The Dynamic and Machining Characteristics of Co-axial Grinding Machining System (동축 가공 연삭시스템의 운동 및 가공 특성)

  • Kim G.H.;Lee S.W.;Choi H.Z.;Choi Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.608-611
    • /
    • 2005
  • As the optical communication industry is developed, the demand of optical communication part is increasing. $ZrO_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. For the precision grinding machining, it is very important that the error of feeding system is improved. Therefore, we estimated the dynamic characteristics in feeding system of ultra precision co-axial grinding machining system. Then, we performed the machining characteristics experiment.

  • PDF

Structural Optimization and Performance Evaluation of Ultra Precision Co-axial Ferrule Grinding Machining System (초미세 고기능 동축가공 연삭 시스템의 구조 최적화 및 특성 평가)

  • Ahn K.J.;Lee H.J.;Kim G.J.;Kim G.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.559-560
    • /
    • 2006
  • Fiber optic connector, ferrule, is a device to connect and align fiber optics cable on fiber-optic communication system. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. For the precision grinding machining, it is very important that structure of co-axial ferrule grinding system is optimized. In this paper, Structural analysis was performed to analyze bed and frame structure of co-axial grinding machine. Deformation and modal analysis for natural frequency was performed using ANSYS design space program to analyze structural characteristics. New improved model of bed and frame structure was proposed based on initial basic model. Therefore, we estimated the structural characteristics precision co-axial grinding machining system.

  • PDF