• Title/Summary/Keyword: cerevisiae

Search Result 1,653, Processing Time 0.036 seconds

Isolation and Identification of Wild Yeasts from Schizandra (Schizandra chinensis) for Wine Production and Its Characterization for Physicochemical and Sensory Evaluations (야생효모의 분리, 동정과 이를 이용한 오미자 발효주의 이화학 및 관능 특성의 비교)

  • Lee, Si-Hyung;Park, Hae-Kyung;Kim, Myung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1860-1866
    • /
    • 2010
  • The purpose of this research was to characterize physicochemical properties and sensory evaluation of schizandra wines fermented by the yeasts, Sacchromyces cerevisiae SH8094 (S. cerevisiae SH8094) and Sacchromyces cerevisiae SH2855 (S. cerevisiae SH2855) isolated from schizandra fruits and stems and compare these results with the results from commercial activated yeast (Lalvin 1118) and a commercial schizandra wine. Three different schizandra wines fermented by S. cerevisiae SH8094, S. cerevisiae SH2855, and Lalvin 1118 showed similar results in pH and titratable acidity. On the other hand, the schizandra wines fermented by S. cerevisiae SH8094 and S. cerevisiae SH2855 showed high brix ($14^{\circ}$brix), low alcohol content (9%), and low yeasts count (4.1 log CFU/mL), compared with the schizandra wine fermented by Lalvin 1118. Both schizandra wines made with S. cerevisiae SH8094 and S. cerevisiae SH2855 showed higher scores in swallowing and overall acceptability than the schizandra wine made with Lalvin 1118. When compared with a commercial schizandra wine, the schizandra wine fermented with S. cerevisiae SH8094 showed better qualities in aroma ($6.65{\pm}1.47$), color ($7.53{\pm}1.14$), and overall acceptability ($6.76{\pm}1.03$). In conclusion, S. cerevisiae SH8094 which was isolated from schizandra fruits and stems has a high potential in schizandra wine fermentation.

Effects of Dietary Saccharomyces cerevisiae on Growth Performance and Meat Quality in Broilers (효모(Saccharomyces cerevisiae)의 급여가 육계의 생산성과 계육의 품질에 미치는 영향)

  • A. W. Zhang;Lee, B. D.;H. R. Oh;Lee, S. K.;G. H. An
    • Korean Journal of Poultry Science
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • An experiment was conducted to investigate whether Saccharomyces cerevisiae(S. cerevisiae) could improve the growth performance and meat quality of broiler chicks. Day old 160 male broiler chicks were fed one of the two experimental diets without (0.0 %) or with S. cerevisiae (3.0 %) for five wks. Each treatment consisted of eight cages with 10 chicks per cage. Feed and water were provided ad libitum. Although not significant, BW gains of S. cerevisiae fed chicks tended to increase during 4∼5 wk of age. The addition of S. cerevisiae into the control diet significantly lowered the shear force in raw drumstick meat (P<0.05). After 10 d of incubation, significantly lower levels of oxidation products were found (P<0.05) in drumstick meats and skin samples from broiler chicks fed diets enriched with S. cerevisiae compared to those of the control group, while in breast meats the significant difference was monitored after 6 d of incubation. It is concluded that dietary S. cerevisiae could improve the tenderness and oxidative stability of broiler meats.

Changes of Chemical Components during Seibel White Grape Must Fermentation by Different Yeast Strains (Seibel 백포도즙 발효중 화학성분의 변화)

  • Koh, Kyung-Hee;Chang, Woo-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.487-493
    • /
    • 1998
  • This study was attempted to investigate the changes of chemical components by different yeast strains during alcohol fermentation at $12^{\circ}C$. Saccharomyces cerevisiae, Saccharomyces cerevisiae+Schizosaccharomyces pombe, and Schizosaccharomyces pombe were inoculated in the Seibel grape must, respectively. Sch. pombe began to metabolize malic acid after 4 days fermentation actively and utilized approximately 54% of initial malic acid. Ethanol contents of S. cerevisiae, S. cerevisiae+Sch.. pombe and Sch. pombe were 11.5%, 11.2%, and 10.0%, respectively. The fermentability of Sch. pombe was slower than that of S. cerevisiae. The production of sulfite showed a positive linear relationship with the yeast growth (P<0.01). Sensory scores indicated that the wine samples fermented by S. cerevisiae and Sch. pombe were not significantly different in color, odor, after taste and overall acceptability. Especially, the taste of Sch. pombe was significantly better than that of S. cerevisiae (P<0.05).

  • PDF

Development of Red Wine Using Monascus anka (Monascus anka를 이용한 적포도주 제조)

  • Bae, In-Young;Lee, Kwang-Yeon;Shin, Min-Su;Lee, Hyeon-Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.744-748
    • /
    • 2004
  • Effects of Monascus anka and Saccharomyces cerevisiae on wine brewing were investigated. Alcohol dehydrogenase activity in cell-free extracts of M. anka was 56.89% as compared to 100% of S. cerevisiae. Although initial fermentation was low, M. anka exhibited very similar fermentation pattern and ethanol production to those of S. cerevisiae. Acidity and reducing sugar content of red wine produced by M. anka were higher than those of S. cerevisiae-produced one. During fermentation, color value increased, whereas turbidity decreased in both red wine. M. anka-produced wine showed higher color value than S. cerevisiae-produced one. During fermentation, phenolic compounds known as antioxidants of red wine decreased. Total phenolic content (1608.01 mg/L) of M. anka-produced red wine was significantly higher than that (1337.60 mg/L) of S. cerevisiae-produced one (p<0.05). These results suggest quality of red wine could be improved using M. anka.

Pb Biosorption by Saccharomyces cerevisiae (Saccharomyces cerevisiae에 의한 Pb 생체흡착)

  • 안갑환;서근학
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • The contamination of the environment by heavy metals results in a serious public health problem due to the toxicity of those pollutants even at low concentrations. Microorganisms may be used to remediate wastewaters contamlialtd with heavy metals. The waste S. cerevisiae is an inexpensive readily available source of biomass for bioremediation of wastewater. S. cerevisiae was investigated for their ability to absorb Pb. The crushed biomass of S. cerevisiae exhibited higher Pb uptake capacity than the living S. cerevisiae and the sterilized S. cerevisiae. At the same metal concentration, metal uptake per unit concentration or adsorbent decreased when the biomass concentration rises. The order of the biosorption capacity of the living S. cerevisiae was Pb>Cu>Cd=Co>Cr. When S. cerevisiae was pretreated with 0.1 M NaOH, Pb uptake was increased by 150 percent and 0.1 M HC1, 0.1 M $H_2S_O4$ solutions were efficient in the desorption of Pb. The sorption equilibrium of Pb ions can be described by the Freundlich and Langmuir models.

  • PDF

Change in Growth of alcohol Fermentation Yeast with Addition of Deep Seawater (해양 심층수 첨가에 따른 알콜발효 효모의 증식 변화)

  • 김미림;정지숙;이기동
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.417-420
    • /
    • 2003
  • In order to study optimum culture condition of yeast medium added deep seawater, we examed samples with 9 yeast strains. The growth rate were measured for Saccharomyces cerevisiae 10, 11, 12, 901 and RCY and Saccharomyces kluyvery DJ97, Saccharomyces cerevisiae YJK, JK99, CMY-28 etc.. The growth of S. cerevisiae 12 was found most active in the deep seawater(hardness 500). The growth rate of S. cerevisiae 901 on medium containing deep seawater(hardness 1000) was faster than that of the yeast on medium without deep seawater. The use of deep seawater on the growth of Sacch.cerevisiae kluyvery DJ97 revealed maximum growth under the condition of hardness 200 of deep seawater and 10% of sugar concentration.

고온성 알콜발효 효모의 Alcohol Dehydrogenase의 특성

  • Yea, Sang-Soo;Lim, Si-Kyu;Sohn, Ho-Yong;Jin, Ing-Nyul;Rhee, In-Koo;Kim, Young-Ho;Seu, Jung-Hwn;Park, Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.386-390
    • /
    • 1997
  • The characteristics of alcohol dehydrogenase (ADH, EC 1.1.1.1, alcohol:NAD oxidoreductase) of thermotolerant alcohol-producing yeasts, Saccharomyces cerevisiae RA-74-2 and Kluyveromyces marxianus RA-912, were compared with that of mesophilic S. cerevisiae D, an industrial strain. Under anaerobic culture condition, both S. cerevisiae RA-74-2 and D had similar level of ADH activity at 30$\circ$C, and the activity of S. cerevisiae RA-74-2 at 37$\circ$C was the same level at 30$\circ$C. However, the level of ADH activity of S. cerevisiae D at 37$\circ$C decreased about 70% of that at 30$\circ$C. The level of enzyme activity of K. marxianus RA-912, which showed lower alcohol productivity than S. cerevisiae RA-74-2 and D, was about 43% of those strains at 30$\circ$C, and decreased somewhat at 37$\circ$C. The results showed a good correlation between the alcohol productivities and the level of ADH activities of these strains grown at 30$\circ$C and 37$\circ$C. And the higher heat stability of ADH of S. cerevisiae RA-74-2 than that of S. cerevisiae D seemed to reflect the ability of high temperature fermentation. Despite of its fermentation ability even at 45$\circ$C, however, the ADH of K. marxianus RA-912 showed lower heat stability than that of S. cerevisiae D. Both S. cerevisiae RA-74-2 and D showed similar patterns of two bands of ADH isozyme, and the low band of S. cerevisiae RA-74-2 moved slightly faster than that of S. cerevisiae D. The staining intensity of the bands of S. cerevisiae D at 37$\circ$C was weaker than those at 30$\circ$C. However, S. cerevisiae RA-74-2 showed no differences in total intensity of the bands of 30$\circ$C and 37$\circ$C. As the patterns of cellular proteins and ADH isozyme of K. marxianus RA-912 were different from S. cerevisiae RA-74-2 and D, K. marxianus might have its own characteristic ADH system.

  • PDF

Overproduction and High Level Secretion of Glucose Oxidase in Saccharomyces cerevisiae (Glucose Oxidase의 Saccharomyces cerevisiae에서의 대량생산 및 고효율 분비)

  • 홍성용;최희경;이영호;백운화;정준기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 1998
  • The overproduction and high level secretion of Glucose Oxidase (GOD) from A. niger in S. cerevisiae was carried out by cloning GOD gene. For this purpose, using two different strong promoters (ADH1 promoter, GAL10 promoter) and signal sequences (${alpha}$-MF signal sequence of S. cerevisiae and ${alpha}$-amylase signal sequence of A. oryzae) and GAL7- and GOD terminator, four expression vectors were constructed. All the expression vectors were transformed in S. cerevisiae 2805 using auxotroph method. By the flask culture, transformants of pGAL expression vector series containing GAL 10 promotor showed much higher GOD productivity than transformants of pADH expression vector series containing ADH1 promoter Transformants of pGALGO2 containing GAL10 promotor and ${alpha}$-amylase signal sequence has shown the best productivity of GOD ($GOD_{total}$: 10.3 unit/mL, $GOD_{ex}$: 8.7 unit/mL) at 115 hr. This value was three fold higher than that of pGALGO1 containing GAL 10 promotor and ${alpha}$-MF signal sequence, even if the same promotor was involved. Through the ${alpha}$-amylase signal sequence of A. oryzae, GOD was secreted much more than the case of ${alpha}$-MF signal sequence from S. cerevisiae. These results suggest that signal sequence may play a important roles in not only the secretion but also the overproduction of foreign protein. Secretion rate of GOD in pGALGO1 and pGALGO2 was 89% and 84%, respectively, Because of the overglycosylation in S. cerevisiae the molecular weight of recombinant GOD in S. cerevisiae was much larger (250 kDa) than that of nature GOD in A. niger (170 kDa).

  • PDF

Functional Expression of the Neurospora crassa coq-4 Gene in Saccharomyces cerevisiae. (Saccharomyces cerevisiae에서 Neurospora crassa coq-4 유전자의 기능적 발현)

  • 김은정;최상기;천재우;오계헌;이병욱
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.73-80
    • /
    • 2004
  • Coenzyme Q is a quinone derivative that acts as a lipid electron carrier in the respiratory chain located at mito-chondrial inner membrane in eucaryotes or plasma membrane in procaryotes and also functions as antioxidant. A putative Neurospora crassa coq-4 gene was cloned and functionally expressed in Saccharomyces cerevisiae coq4 mutant. Complemented S. cerevisaie mutant strain was able to produce coenzyme $Q_{6}$ and showed a normal growth rate. They also showed less sensitivities to polyunsaturated fatty acids such as linoleic acid or linolenic acid. The predicted sequence of N. crassa COQ4 is consisted of 347 amino acids with a molecular mass of 39.7 kDa and showed 35% identity and 52% similarity with that of S. cerevisiae.

Characterization of Bacillus stearothermophilue Cyclodextrin Glucanotransferase that Expressed by Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 발현된 Bacillus stearothermophilus Cyclodextrin Glucanotransferase의 특성)

  • 박현이;전숭종;권현주;남수완;김한우;김광현;김병우
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.293-297
    • /
    • 2002
  • The cyclodextrin glucanotransferase (CGTase) gene from Bacillus stearothermophilus NO2 was expressed in Saccharomyces cerevisiae 2805 under the adhl promoter. The CGTase was purified from S. cerevisiae 2805/pVT-CGTS. The purified enzyme exhibited a optima of activity around pH 7.0 and $65^{\circ}C$. Thermal stability of the enzyme was increased fairly as compared with the CGTase of B. stearothermophilus NO2. The conversion yield of cyclodextrin (CD) and the production ratio of $\alpha$-, $\beta$,-, ${\gamma}$-CD from starch were showed similarly aspect to the CGTase of B. stearothermophilus NO2.