• Title/Summary/Keyword: charge transfer complex

Search Result 159, Processing Time 0.029 seconds

The Effects of Charge Transfer Complex on the Reaction of N,N-dimethylaniline and Iodine (N,N-Dimethylaniline과 Iodine간의 반응에 있어서 Charge Transfer Complex의 영향)

  • Oh-Yun Kwon;U-Hyon Paek;Eung-Ryul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.191-196
    • /
    • 1992
  • Reaction of N,N-dimethylaniline(N,N-DMA) and iodine in $CHCl_3,\;CH_2Cl_2 : CHCl_3$(1:1), $CH_2Cl_2$(1:1), and CH2Cl2 has been studied kinetically by using conductivity method. Pseudo first-order rate constants ($k_{obs}$) and second-order rate constants ($k_{obs}$/[N,N-DMA]) are dependent on the N,N-DMA concentration. Second-order rate constants obtained were decreased with increasing N,N-DMA concentration. We analysed these results on the basis of formation of charge transfer complex as a reaction intermediate. From the construction of reaction scheme and activation parameters for the formation and transformation of charge transfer complex. The equilibrium constants decreased when the dielectric constant of solvent was increased, and the value is 1.9${\sim}$4.2$M^{-1}$. The rate of transformation are markedly affected by the solvent polarity.${\Delta}H^{\neq}$ is 6.3-12.6kJ/mol, and ${\Delta}S^{\neq}$ is large negative value of -234J/mol K.

  • PDF

Syntheses and Characteristics of Intermolecular Charge-Transfer Complex Dyes (분자간 전하이동형 기능성 색소의 합성과 물성)

  • Kim, Sung Hoon;Lee, Soon Nam;Lim, Yong Jin
    • Textile Coloration and Finishing
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 1992
  • The charge-transfer(CT) complexes derived from various donors and acceptors were evaluated as coloring matter. Dyes absorbing light in the region from the visible to the near-infrared wavelengths were synthesized. In order to determine the molar ratio of the donor to the acceptor in the CT complex in the solution, the continuous variational method was applied to each system. A 1:1 correspondence between the donor and the acceptor molecules in the CT complex in the solution is established. Color development properties in paper were examined. The longer the exposure time at constant temperature, the deeper the strength of color in paper. The strength of color at high temperature was decreased, because sublimed CT dyes in paper were migrated out side of paper.

  • PDF

Complexation Studies for Cadmium (II) with Quercetin and (+)-Catechin (Quercetin과 (+)-Catechin의 카드뮴(II)에 대한 착물반응)

  • Lee, Jeong-Ho;Shin, Sun-Woo;Baek, Seung-Hwa
    • YAKHAK HOEJI
    • /
    • v.53 no.6
    • /
    • pp.342-350
    • /
    • 2009
  • The interaction of cadmium (II) ion with quercetin and (+)-catechin was investigated in aqueous solution at various pH. The flavonoid/cadmium stochiometries for cadmium (II) binding to quercetin and (+)-catechin have been determined by UV-vis spectroscopy. 1 : 1 Cd (II)-Flavonoid complex had a maximum absorbance and showed the bathochromic shift of the long-wavelength band of the UV-vis spectra in the alkaline pH, that occurs upon complexation, due to a ligandto-metal charge transfer. These results suggest that Cd (II)-flavonoid complex has the optimal condition of chelation in 0.2 M $NH_3$ - 0.2 M $NH_4Cl$ (pH 8.0) solution.

The Physicochemical Properties on the Organic, Charge Transfer Complexes under High Pressure (고압하의 전하이동착물에 대한 물성론적 연구. 사염화탄소 용액내에서의 헥사메틸벤젠과 1,3,5-트리니트로벤젠과의 전하이동착물 생성에 대한 압력과 온도의 영향)

  • Oh Cheun Kwun;Myong Ja Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.513-519
    • /
    • 1988
  • The effect of pressure and temperature on the stabilities of hexamethylbenzene-1,3,5-trinitrobenzene charge transfer complex in carbon tetrachloride has been investigated by spectrophotometric measurements. The absorption spectra of charge transfer complexes were measured at 25, 40, $50^{\circ}C$ under 1, 200, 500, 1000, 1400 bar in this experiments. The equilibrium constants of the complex were increased with pressure and decreased with temperature rising. The absorption coefficients were increased with pressure and temperature. Change of volume, enthalpy, free energy and entropy for the formation of complexes were calculated from the equilibrium constants. The red-shift observed at a higher pressure, the blue-shift at a higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic fuctions.

  • PDF

EXCITED-STATE TWISTED INTRAMOLECLILAR CHARGE TRANSFER OF p-N,N-DIMETHYLAMINOBENZOIC ACID IN AQUEOUS CYCLODEXTRIN SOLUTIONS: TIME-RESOLVED FLUORESCENCE STUDY

  • Kim, Yong-Hee;Cho, Dae-Won;Yoon, Min-Joong
    • Journal of Photoscience
    • /
    • v.3 no.3
    • /
    • pp.153-158
    • /
    • 1996
  • The effects of $\alpha$- and $\beta$-cyclodextrins (CD) on the twisted intramolecular charge transfer (TICT) behavior of p-N,N'-dimethylaminobenzoic acid (DMABA) in buffered aqueous solution have been investigated by examining formation and decay behaviors of the TICT-typical dual fluorescence. The ratio of the TICT emission to the normal emission (I$_a$/I$_b$) increases linearly $\alpha$-CD concentration increases, while in the presence of $\beta$-CD it shows nonlinear dependences on the CD concentration. The analysis of the CD-dependent changes of the I$_a$/I$_b$ and absorption spectra demonstrates formation of 1:1 inclusion complexes between DMABA and CDs. The decay time of the normal emission (ca. 700 ps) is little affected by the formation of $\alpha$-CD inclusion complex, whereas it increases upto ca. 1.6 ns upon formation of $\beta$-CD inclusion complex. The TICT emission for the $\beta$-CD inclusion complex exhibits two decay components while it shows a single component for the $\alpha$-CD inclusion complex, indicating formation of one or two types of inclusion complex in the presence of $\alpha$-CD or $\beta$-CD, respectively. These results are attributed to the CD cavity size dependence on patterns of complexation between CDs and DMABA. The CD size dependences of the TICT fluorescence properties with the orientation of the guest molecule demonstrate that the specific hydrogen bonding between the carboxylic acid group and water plays an important role in the excited-state TICT.

  • PDF

Reaction of $FeC_5H_5^+$ Ion with Neutral Ferrocene: The Dependence of Reaction Pathways on Its Internal Energy

  • 김병주;소훈영
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1181-1185
    • /
    • 1999
  • The reaction of FeC5H5+ ion with ferrocene molecule is investigated using FT-ICR mass spectrometry. FeC5H5+ ions are generated by dissociative ionization of ferrocenes using an electron beam. The reaction gives rise to the formation of the adduct ion, Fe2(C5H5)3+, in competition with charge transfer reaction leading to the formation of ferrocene molecular ion, Fe(C5H5)2+·. The branching ratio of the adduct ion increases as the internal energy of the reactant ion decreases and correspondingly the branching ratio for the charge transfer reaction product decreases. The observed rate of the addition reaction channel is slower than that of the charge transfer reaction. The observation of the stable adduct ions in the low-pressure ICR cell is attributed to the radiative cooling of the activated ion-molecule complex. The mechanism of the reaction is presented to account for the observed experimental results.

The Study on the Physicochemical Properties of Fluid under High Pressure (Ⅱ). The Effect of Pressure and Temperature on the Hexamethyl Benzene-Iodine Charge Transfer Complex in n-Hexane

  • Kwun Oh Cheun;Kim Jeong Rim
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.186-191
    • /
    • 1985
  • The effect of pressure and temperature on the stabilities of the charge transfer complexes of hexamethyl benzene with iodine in n-hexane has been investigated by UV-spectrophotometric measurements. In this experiment the absorption spectra of mixed solutions of hexamethyl benzene and iodine in n-hexane were measured at 25, 40 and $60^{\circ}C$ under 1,200, 600, 1200 and 1600 bar. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red shift at higher pressure, the blue shift at higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions. In comparison with the results in the previous studies, it can be seen that the pressure dependence of oscillator strength has a extremum behavior in durene as the variation of ${\Delta}H$ or ${\Delta}S$ with the number of methyl groups of polymethyl benzene near atmospheric pressure in the previous study. The shift or deformation of the potential in the ground state and in the excited state of the complexes formed between polymethyl benzene and iodine was considered from the correlation between the differences of the electron transfer energies and the differences of free energies of the complex formation for the pressure variation.

Intepretation of Faradaic Impedance for Corrosion Monitoring

  • Itagaki, M.;Taya, A.;Imamura, M.;Saruwatari, R.;Watanabe, K.
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • A polarization resistance is generally used to estimate the corrosion rate in the corrosion monitoring by an electrochemical impedance method. When the Faradaic impedance has a time constant due to the reaction intermediate, the electrochemical impedance describes more than one loop on the complex plane. For example, the electrochemical impedance of iron in acidic solution shows capacitive and inductive loops on the complex plane. In this case, the charge transfer resistance and the polarization resistance are determined at middle and low frequency ranges, respectively. Which should be selected for corrosion resistance in corrosion monitoring, the charge transfer resistance or the polarization resistance'? In the present paper, the above-mentioned question is examined theoretically and experimentally.

The Determination of Enoxacin with p-Quinone Derivatives (파라퀴논 유도체와의 전하이동착물 형성을 이용한 에녹사신 정량)

  • 이지연;김동오;남수자;정문모;허문회;안문규
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.437-441
    • /
    • 1999
  • Enoxacin[1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-\piperazinyl)-1,8-naphthyridine-3-carboxylic acid, ENX] is a new quinolone antibacterial agent. The method is based on the highly colored charge-transfer complex formation of this drug as a $\pi$-electron donor with 7,7,8,8-tetracyanoquinodimethane(TCNQ) or chloranil(CL) as $\pi$-acceptors. The colored products were measured spectrophotometrically at 842 nm and 552 nm for TCNQ and CL, respectively. The different experimental conditions are optimized. The linearities for TCNQ and CL were $1.6{\;}\mu\textrm{g}/mL~32{\;}\mu\textrm{g}/mL$ and $6.4{\;}\mu\textrm{g}/mL~160{\;}\mu\textrm{g}/mL$, respectively and colors were produced in non-aqueous media. This report describes a simple and ra\pid method for the analysis of enoxacin.

  • PDF