• Title/Summary/Keyword: chickpea

Search Result 35, Processing Time 0.027 seconds

Studies for Physicochemical and In Vitro Digestibility Characteristics of Flour and Starch from Chickpea (Cicer arietinum L.)

  • Chung, Hyun-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.339-347
    • /
    • 2011
  • Flour and isolated starch from chickpea (desi type, 328S-8) were evaluated for their in vitro digestibility and physicochemical properties. The protein content, total starch content and apparent amylose content of chickpea flour and isolated starch were 22.2% and 0.6%, 45.8% and 91.5%, and 11.7% and 35.4%, respectively. Chickpea starch granules had an oval to round shape with a smooth surface. The X-ray diffraction pattern of chickpea starch was of the C-type and relative crystallinity was 24.6%. Chickpea starch had only a single endothermic transition (13.3 J/g) in the DSC thermogram, whereas chickpea flour showed two separate endothermic transitions corresponding to starch gelatinization (5.1 J/g) and disruption of the amylose-lipid complex (0.7 J/g). The chickpea flour had a significantly lower pasting viscosity without breakdown due to low starch content and interference of other components. The chickpea starch exhibited significant high setback in the viscogram. The average branch chain length, proportion of short branch chain (DP 6~12), and long branch chains (DP${\geq}$37) of isolated chickpea starch were 20.1, 20.9% and 9.2%, respectively. The rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) contents of chickpea flour and starch were 9.9% and 21.5%, 28.7% and 57.7%, and 7.1% and 9.3%, respectively. The expected glycemic index (eGI) of chickpea flour (39.5), based on the hydrolysis index, was substantially lower than that of isolated chickpea starch (69.2).

Quality Characteristics of Noodles with Added Chickpea (Cicer ArietinumL.) Power (병아리콩 분말을 첨가한 국수의 품질 특성)

  • Youn Ri Lee
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.4
    • /
    • pp.321-326
    • /
    • 2023
  • Noodles were manufactured using chickpea powder to evaluate quality characteristics. Compared to noodles made of wheat flour, noodles made with chickpea powder showed higher contents of protein, lipids, ash, and dietary fiber. Among noodle cooking characteristics, weight, moisture absorption rates, volume, and turbidity decreased significantly as the added amount of chickpea powder increased. Comparisons made of the color of noodles with raw noodles after cooking showed that the brightness (L value) of raw noodles tended to decrease as more chickpea powder was added after cooking, and levels of red (a value) and levels of yellow (b value) tended to increase as more chickpea powder was added after cooking. The texture of noodles with added chickpea powder tended to increase as more chickpea powder was added, such as hardness, springiness, gumminess, cohesiveness, and chewiness.

Pathogenic Diversity of Ascochyta rabiei Isolates and Identification of Resistance Sources in Core Collection of Chickpea Germplasm

  • Farahani, Somayeh;Talebi, Reza;Maleki, Mojdeh;Mehrabi, Rahim;Kanouni, Homayoun
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.321-329
    • /
    • 2019
  • Ascochyta blight caused by Ascochyta rabiei (Pass.) Lab. (Telomorph: Didymella rabiei) (Kov.) is one of the most important fungal diseases in chickpea worldwide. Knowledge about pathogen aggressiveness and identification resistance sources to different pathotypes is very useful for proper decisions in breeding programs. In this study, virulence of 32 A. rabiei isolates from different part of Iran were analyzed on seven chickpea differentials and grouped into six races based on 0-9 rating scale and susceptibility/resistant pattern of chickpea differentials. The least and most frequent races were race V and race I, respectively. Race V and VI showed highly virulence on most of differential, while race I showed least aggressiveness. Resistance pattern of 165 chickpea genotypes also were tested against six different A. rabiei races. ANOVA analysis showed high significant difference for isolate, chickpea genotypes and their interactions. Overall $chickpea{\times}isolate$ (race) interactions, 259 resistance responses (disease severity ${\leq}4$) were identified. Resistance spectra of chickpea genotypes showed more resistance rate to race I (49.70%) and race III (35.15%), while there were no resistance genotypes to race VI. Cluster analysis based on disease severity rate, grouped chickpea genotypes into four distinct clusters. Interactions between isolates or races used in this study, showed the lack of a genotype with complete resistance. Our finding for virulence pattern of A. rabiei and newly identified resistance sources could be considerably important for integration of ascochyta blight resistance genes into chickpea breeding programs and proper decision in future for germplasm conservation and diseases management.

Genetic Similarity between Cotton Leafroll Dwarf Virus and Chickpea Stunt Disease Associated Virus in India

  • Mukherjee, Arup Kumar;Mukherjee, Prasun Kumar;Kranthi, Sandhya
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.580-583
    • /
    • 2016
  • The cotton leafroll dwarf virus (CLRDV) is one of the most devastating pathogens of cotton. This malady, known as cotton blue disease, is widespread in South America where it causes huge crop losses. Recently the disease has been reported from India. We noticed occurrence of cotton blue disease and chickpea stunt disease in adjoining cotton and chickpea fields and got interested in knowing if these two viral diseases have some association. By genetic studies, we have shown here that CLRDV is very close to chickpea stunt disease associated virus (CpSDaV). We were successful in transmitting the CLRDV from cotton to chickpea. Our studies indicate that CpSDaV and CLRDV in India are possibly two different strains of the same virus. These findings would be helpful in managing these serious diseases by altering the cropping patterns.

Why do Chickpea (Cicer arietinum L. cv. Tyson) Bacteroids Contain Little Poly-β-Hydroxybutyrate?

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Poly-${\beta}$-hydroxybutyrate (PHB) and enzymes related PHB metabolism have been measured in nitrogen-fixing symbiosis of chickpea and cowpea plants. Bacteroids from chickpea and cowpea contained PHB to 0.8% and 43% of their dry weight, respectively, whereas the free-living cells CC 1192 and I 16 produced $285{\pm}55mg$ and $157{\pm}18mg$ of PHB g (dry weight)$^{-1}$. To further understand why chickpea bacteroids contained little PHB, the enzyme activities of PHB metabolism (3-ketothiolase, acetoacetyl-CoA reductase, PHB depolymerase, and 3-hydroxybutyrate dehydrogenase), the TCA cycle (malate dehydrogenase, citrate synthase, and isocitrate dehydrogenase), and related reactions (malic enzyme, pyruvate dehydrogenase, and glutamate:2-oxoglutarate transaminase) were compared in extracts from chickpea and cowpea bacteroids and the respective free-living bacteria. Significant differences were observed between chickpea and cowpea bacteroids and between the bacteroid and free-living forms of CC 1192, with respect to the capacity for some of these reactions. It is indicated that a greater potential for oxidizing malate to oxaloacetate in chickpea bacteroids could be a factor that favors the utilization of acetyl-CoA in TCA cycle rather than for PHB synthesis.

  • PDF

Response of Chickpea to Dual Inoculation with Rhizobium and Arbuscular Mycorrhiza, Nitrogen and Phosphorus

  • Solaiman, A.R.M.;Molla, M.N.;Hossain, M.D.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.527-533
    • /
    • 2006
  • The response of chickpea (Cicer arietinum L.) to dual inoculation with Rhizobium (R) and arbuscular mycorrhiza (AM), nitrogen (N) and phosphorus (P) was studied on spore abundance and colonization of AM, nodulation, growth, yield attributes and yield. In all the parameters of the crop the performance of Rhizobium inoculant alone was superior to control. Dual inoculation with Rhizobium and AM in presence of P performed the best in recording number of spore $100g^{-1}$ rhizosphere soil and root colonization, number and dry weight of nodule, dry weights of shoot and root, number of pod $plant^{-1}$, number of seed $pod^{-1}$, seed and stover yields of chickpea. The maximum seed yield of 3.33 g $plant^{-1}$ was obtained by inoculating chickpea plants with Rhizobium and AM in association with P. From the view point of nodulation, growth, yield attributes and yield of chickpea, dual inoculation with Rhizobium and AM along with P was considered to be the balanced combination of nutrients for achieving the highest output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

Quality Characteristic and Antioxidant Activity Analysis of Soybean Milk added Chickpea (병아리콩을 첨가한 두유의 품질 특성 및 항산화 활성)

  • Han, Kee-Young;Choi, Jin-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.5
    • /
    • pp.1015-1024
    • /
    • 2017
  • In order to verify the quality characteristics of soybean milk added chickpeas, the following characteristics were investigated: pH, solid contents, color, DPPH radical scavenging, as well as electric nose and sensory evaluation. Physicochemical and the sensory characteristics were analyzed based on the experimental data. The pH value was different in the control and the treatments (p<0.005). As the quantity of chickpea content increased, the solid content was augmented (p<0.0001). The L value was 56.86 in the control, and with the amount of chickpea addition increasing, the L value increased to 57.43 in 100% chickpea soybean milk (p<0.0001). The a value and b value also increased significantly (p<0.0001). However, the DPPH radical scavenging in the control was the lowest but the antioxidant activity of 100% chickpea milk was more than 2.5 higher than that of the control (p<0.0001). In the electric nose experiment, the flavor component of 20%, 30% and 100% chickpea treatment showed a significant difference compared to the control in the flavor components. In the sensory evaluation, for the score of flavor (p<0.001) and taste (p<0.0001), the score was higher in the treatments where 20% and 30% of chickpeas were added. In the sensory test of texture, there was no significant difference in the different experimental conditions except for the 100% chickpea addition treatment. In the overall acceptability test, the scores of 20% and 30% chickpea treatment were the highest results, compared to other treatments (p<0.0001). According to the correlation analysis, both antioxidant activity (0.797) and solid content (0.834) had shown high correlation to pH among the physiochemical characteristics (p<0.01). In the sensory evaluation, color, flavor, taste, texture and overall acceptability had shown a positive correlation to the amount of the soy bean milk added chickpea (p<0.01). In particular, the overall acceptability had shown the highest correlation to the taste (0.803), and it was the texture which resulted in the next highest correlation for overall acceptability (0.666).

Effects of Inoculation of Rhizobium and Arbuscular Mycorrhiza, Poultry litter, Nitrogen, and Phosphorus on Growth and Yield in Chickpea

  • Solaiman A. R. M.;Rabbani M. G.;Molla M. N.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.256-261
    • /
    • 2005
  • The experiment was conducted at the Ban­gabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur to study the response of chickpea (Cicer arietinum L) to dual inoculation of Rhizobium and arbuscular mycorrhiza, poultry litter, nitrogen, and phosphorus on spore population and colonization, nodulation, growth, yield attributes, and yield. The performance of Rhizobium inoculant alone was superior to control in all the parameters of the crop studied. Among the treatments dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter performed best in recording number and dry weight of nodules, dry weight of shoots and roots, number of pods/plant, number of seeds/pod, and seed yields of chickpea. The highest seed yield of 3.96g/plant was obtained by inoculating chickpea plants with dual inoculation of Rhizobium and arbuscular mycorrhiza in association with poultry litter. Treatments receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of nitrogen and phosphorus, Rhizobium inoculant in presence of nitrogen and phosphorus, and that of arbuscular mycorrhiza in presence of nitrogen and phosphorus were similar as that of treatment receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter. From the view point of nodulation, growth, yield attributes, and yields of chickpea, dual inoculation of Rhizobium inoculant and arbuscular mycorrhiza along with poultry litter was considered to be the balanced combination of nutrients for achieving the maximum output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

Induction of Defense Related Enzymes and Pathogenesis Related Proteins in Pseudomonas fluorescens-Treated Chickpea in Response to Infection by Fusarium oxysporum f. sp. ciceri

  • Saikia, Ratul;Kumar, Rakesh;Singh, Tanuja;Srivastava, Alok K.;Arora, Dilip K.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • Pseudomonas fluorescens 1-94 induced systemic resistance in chickpea against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri by the synthesis and accumulation of phenolic compounds, phenylalanine ammonia lyase(PAL) and pathogenesis related(PR) proteins(chitinase, $\beta$-1,3-glucanase and peroxidase). Time-course accumulation of these enzymes in chickpea plants inoculated with P. fluorescens was significantly(LSD, P=0.05) higher than control. Maximum activities of PR-proteins were recorded at 3 days after inoculation in all induced plants; thereafter, the activity decreased progressively. Five PR peroxidases detected in induced chickpea plants. Molecular mass of these purified peroxidases was 20, 29, 43, 66 and 97 kDa. Purified peroxidases showed antifungal activity against plant pathogenic fungi.

Purification and Biochemical Characterization of Sucrose Synthase from the Cytosolic Fraction of Chickpea (Cicer arietinum L. cv. Amethyst) Nodules

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.12-18
    • /
    • 1999
  • Sucrose synthase (EC 2.4.1.13) has been purified from the plant cytosolic fraction of chickpea (Cicer arietinum L. cv. Amethyst) nodules. The native enzyme had a molecular mass of $356{\pm}15kD$. The subunit molecular mass was $87{\pm}2kD$, and a tetrameric structure is proposed for sucrose synthase of chickpea nodule. Optimum activities in the sucrose cleavage and synthesis directions were at pH 6.5 and 9.0, respectively. The purified enzyme displayed typical hyperbolic kinetics with substrates in cleavage and synthesis reactions. Chickpea nodules sucrose synthase had a high affinity for UDP ($K_m$, $8.0{\mu}M$) and relatively low affinities for ADP ($K_m$, 0.23 mM), CDP ($K_m$, 0.87 mM), and GDP ($K_m$, 1.51 mM). The $K_m$ for sucrose was 29.4 mM. In the synthesis reaction, UDP-glucose ($K_m$, $24.1{\mu}M$) was a more effective glucosyl donor than ADP-glucose ($K_m$, 2.7 mM), and the $K_m$ for fructose was 5.4 mM. Divalent cations, such as $Ca^{2+}$, $Mg^{2+}$, and $Mn^{2+}$, stimulated the enzyme activity in both the cleavage and synthesis directions, and the enzyme was very sensitive to inhibition by $HgCl_2$ and $CuSO_4$.

  • PDF