• Title/Summary/Keyword: chlorine resistance

Search Result 83, Processing Time 0.027 seconds

A Study on Chlorine Resistance Improvement of Reverse Osmosis Membrane by Surface Modification (역삼투 분리막의 표면개질을 이용한 내염소성 향상에 관한 연구)

  • Kim, Younggil;Kim, Nowon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.320-329
    • /
    • 2005
  • Polyamide membrane degradation by chlorine has been studied to improve membrane durability. In this study, it was found that the salt rejection was reduced rapidly and flux of the membrane was increased slowly far membrane treated under chlorine condition. In order to improve resistance to chlorine of the polyamide reverse osmosis membrane, fluorine-containing silane coupling agent (FSCA) was introduced to surface modification. Surface properties and chlorine resistance of silane modified membrane were compared with virgin membrane. It was found that the surface of silane modified membrane has dense structure according to FSCA concentration increasing. The results of surface analysis suggest that FSCA retrieved a severe change in the hydrophobicity and surface roughness. In addition, it appears that FSCA can enhance chlorine resistance due to the interaction of such substance with free radical chlorine.

Characterization of Reverse Osmosis Membrane Surface Modified by Silane-epoxy Using UV (UV를 적용한 역삼투막의 실란-에폭시 표면 개질 및 특성 평가)

  • Park, Hee Min;Yang, Won Yong;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.169-179
    • /
    • 2018
  • The purposes of this paper were to improve both fouling and chlorine resistance by increasing the hydrophilicity of the reverse osmosis membrane. In order to improve chlorine resistance, the surface of RO membrane was activated by ultraviolet irradiation, and then it was modified by the sol-gel method using Octyltriethoxysilane (OcTES) such as the silane coupling agent to low sensitivity to chlorine, thereby the polyamide active layer was protected and chlorine resistance was improved. In addition, polyglycerol polyglycidyl ether (PGPE) and sorbitol polyglycidyl ether (SPE) coating with different number of epoxides, ring opening reaction of epoxide improved the anti-fouling resistance. The surface modification condition was optimized by FT-IR, XPS, and contact angle analysis. As a result, the permeability reduction rate of the silane-epoxy modified membrane after the fouling test was decreased about 1.5 times as compared with that of the commercial membrane. And the salt rejection was maintained over 90% at $20,000ppm{\times}hr$ even after chlorine resistance test.

A Study on the Detection Behavior of Chlorine Dioxide on Metal Oxide Sensors (금속산화물센서의 이산화염소 가스에 대한 감지거동에 관한 연구)

  • Yu, Joon-Boo;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.211-214
    • /
    • 2020
  • Chlorine dioxide is very effective gas for sterilization or disinfection (in manufacturing), and does not produce harmful by-products after use. However, if its concentration exceeds 10 %, it become explosive and cannot be compressed or stored. Therefore, it is necessary to measure its concentration. In this study, the concentration of chlorine dioxide with a high oxidizing strength was measured using a metal oxide sensor. The sensor was a commercially available TGS series from Figaro. The sensitivity of the sensor was inversely proportional to a low concentration of chlorine dioxide gas below 6 ppm and returned to the initial resistance at about 6 ppm. When the gas concentration reached multiples of 10 ppm, resistance of the sensor increased to several megaohms.

Modification of polyamide reverse osmosis membranes seeking for better resistance to oxidizing agents

  • Silva, Lucinda F.;Michel, Ricardo C.;Borges, Cristiano P.
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.169-179
    • /
    • 2012
  • One of the major limitations in the use of commercial aromatic polyamide thin film composite (TFC) reverse osmosis (RO) membranes is to maintain high performance over a long period of operation, due to the sensitivity of polyamide (PA) skin layer to oxidizing agents, such as chlorine, even at very low concentrations in feed water. This article reports surface modification of a commercial TFC RO membrane (BW30-Dow Filmtec) by covering it with a thin film of poly(vinyl alcohol) (PVA) crosslinked with glutaraldehyde (GA) to improve its resistance to chlorine. Crosslinking reaction was carried out at 25 and $40^{\circ}C$ by using PVA 1.0 wt.% solutions at different GA/PVA mass ratio, namely 0.0022, 0.0043 and 0.013. Water swelling measurements indicated a maximum crosslinking density for PVA films prepared at $40^{\circ}C$ and GA/PVA 0.0043. ATR-FTIR and TGA analysis confirmed the reaction between GA and PVA. SEM images of the original and modified membranes were used to evaluate the surface coating. Chlorine resistance of original and modified membranes was evaluated by exposing it to an oxidant solution (NaClO 300 mg/L, NaCl 2,000 mg/L, pH 9.5) and measuring water permeability and salt rejection during more than 100 h period. The surface modification effectively was demonstrated by increasing the chlorine resistance of PA commercial membrane from 1,000 ppm.h to more than 15.000 ppm.h.

An Experimental Study on Chlorine-ion and Carbonation Resistance of the Concrete Using Recycled Aggregate Mixed Fly Ash (플라이애쉬 혼입율에 따른 순환골재콘크리트의 염소이온 및 중성화 저항성에 관한 시험적 고찰)

  • Sim Jong Sung;Park Choel Woo;Park Sung Jae;Kim Kil Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.580-583
    • /
    • 2004
  • Due to the tendency of increase in demolished-concrete produced by alteration and deterioration of concrete structures, recycling of those demolished-concrete is necessary to solve the exhaustion of natural aggregate, in order to save resources and protect environment. In this an experimental study herein, the Chlorine-ion and Carbonation resistance of the recycled aggregate concrete was investigated. Coarse aggregate was replaced with $100\%$ of the recycled aggregate and cement and fine recycled aggregate was replaced with various amount. It was shown that the concrete can obtain resistance of chlorine-ion, when fly ash replaced with up to $30\%$ of cement.

  • PDF

An Experimental Study on Chlorine-ion and Carbonation Resistance of the Spun-Concrete Used Recycled Aggregate and Fiber (순환골재 및 Fiber를 사용한 원심력 콘크리트의 염소이온 및 탄산화 저항성에 대한 시험적 고찰)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Hyun-Jung;Kim, Tae-Gwang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.423-426
    • /
    • 2005
  • Until now, the quantity to recycle wasted concrete as the great supplementary value was very little. But considering a insufficiency of the present state of aggregates, the recycling of wasted aggregates is indispensable. Recycled aggregate is useful resources for concrete, but its application to structural member is not frequently. In this an experimental study here in, this study is to reinforcement orientation containing fiber of the spun-concrete using recycled aggregate, evaluation of designed chlorine-ion and carbonation resistance. The result of study chlorine-ion resistance by using replacement ratios ($0.00\%,\;0.01\%,\;0.03\%,\;0.05\%,\;0.08\%$) of fiber which it more increase. Carbonated thickness of the spun-concrete used fiber and the normal spun-concrete was similar or it appeared with the tendency which it diminishes.

  • PDF

An Experimental Study on the Compressive Strength and Chloride ion penetration resistance of Cement Mortar mixing Anion Exchange Resin (음이온교환수지 혼입 시멘트 모르타르의 압축강도 및 염소이온 침투 저항성에 관한 실험적 연구)

  • Jung, Do-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.23-24
    • /
    • 2018
  • Reinforced concrete is a building material that is generally used in modern society. Also, reinforced concrete structures in high salinity environments have low durability due to corrosion of reinforcing bars due to infiltrated chlorine ions. Anion exchange resins have an ability to immobilize chlorine ions in the resin while releasing their anions. As a material, it has already been shown that it is possible to fix the chloride ion inside the cementitious material through the cement mortar experiment. The purpose of this study is to confirm the compressive strength of cement mortar using powdered anion exchange resin after powdering an anion exchange resin. In order to confirm the chloride ion fixation ability of the powder anion exchange resin, chlorine ion penetration resistance test was carried out.

  • PDF

Syntheses of chlorine resistant reverse osmosis membranes

  • Kim, Nowon;Lee, Yong-Taek
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.170-174
    • /
    • 2004
  • Most of thin film composite reverse osmosis membranes include amide linkages, which are susceptible to chlorine attack resulting in N-chloro derivatives. This study examined a new method based on post-treatment of reverse osmosis membrane with various silane derivatives to improve chlorine resistance. The silane derivatives contain one alkyl group and three alkoxy groups such as trifluoromethyltrimethoxysilane, 3-aminopropylmethoxydiethoxysilane and 3, 3, 3-trifluoropropyltrimethoxysilane. Compared to commercial membranes, silane derivatives coated membranes showed significantly enhanced chlorine durability.

  • PDF

Surface Modification of Reverse Osmosis Membrane with Diphenylamine for Improved Chlorine and Fouling Resistance (Diphenylamine에 의해 표면개질된 역삼투막의 내염소성 및 내오염성 향상)

  • Kwon, Sei;Jee, Ki Yong;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.439-449
    • /
    • 2013
  • This study investigated the aromatic polyamide reverse osmosis membrane was modified with diphenylamine (DPA) for enhanced chlorine and fouling resistance and how to optimize. DPA has high reactivity and thermo chemical stability. The performance of a modified membranes was investigated and its surface analyzed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The experiment was conducted while changing the conditions of temperature and DPA solution concentration.

A Study on the Corrosion of Cu-Ni Alloy in Chlorinated Seawater for Marine Applications (잔류 염소가 포함된 해수에서의 Cu-Ni 합금의 부식 거동 연구)

  • Jung, Geunsu;Yoon, Byoung Young;Lim, Chae Seon
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.176-182
    • /
    • 2018
  • Corrosion of the Cu alloy with 10wt% Ni in stagnant seawater with residual free chlorine was investigated. Despite that fact that Cu alloys are widely used for seawater applications due to their stubborn resistance to chloride attack, not much is known as to how the residual free chlorine in seawater affects corrosion of Cu and its alloys. In this work, immersion tests were conducted in the presence of different levels of chlorine for 90-10 Cu-Ni samples, one of the most frequently used Cu alloys for seawater application, mostly in shipbuilding. The results revealed no evidence for accelerated corrosion of the Cu-Ni alloy even in the presence of 5 ppm residual chlorine in seawater, signifying that the Cu-Ni alloy can be more tolerant to residual chlorine that has been commonly cited by the shipbuilding industry. However, comparison of polarization behavior of the alloy samples in the presence of different electrolytes with different concentrations of residual chlorine suggests that higher concentration of chlorine could increase the corrosion rate of the Cu-Ni alloy. Furthermore, it is suggested that microorganisms in the seawater could increase the corrosion rate of the Cu-Ni alloy by encouraging exfoliation of the corrosion product off the metal surface.