• Title/Summary/Keyword: chondroitin sulfate

Search Result 110, Processing Time 0.026 seconds

Study on Extraction of Mucopolysaccharide-protein Containing Chondroitin Sulfate from Chicken Keel Cartilage

  • Shin, S.C.;You, S.J.;An, B.K.;Kang, C.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.601-604
    • /
    • 2006
  • The objective of this study was to investigate technical methods for extraction of mucopolysachharide-protein containing chondroitin sulfate from keel cartilage of chickens. The chemical composition of chicken keel cartilage was determined. For the preparation of mucopolysaccharide-protein from lyophilized chicken keel cartilage, hot water extraction and alcalase hydrolysis methods were examined. Results showed that the optimum condition of hot water extraction was incubation for 120 min with a yield of 40.09% and chondroitin sulfate content of 28.46%. For alcalase hydrolysis, the most effective condition was 2% alcalase in 10 volumes of distilled water for 120 min. The yield of hydrolysate was 75.87%, and chondroitin sulfate content was 26.61%. For further separation of chondroitin sulfate from the alcalase hydrolysate, which has a higher yield than that of hot water, 60% ethanol precipitation was performed. The yield of the ethanol precipitate was 21.41% and its chondroitin sulfate content was 46.31%. The hot water extract, alcalase hydrolysate and ethanol precipitate showed similar electrophoretic migration with standard chondroitin sulfate (chondroitin sulfate A), using cellulose acetate membrane electrophoresis. These results indicated that a significant amount of mucopolysaccharide-protein containing chondroitin sulfate could be acquired form chicken keel cartilage. Therefore, keel cartilage in chicken may provide an inexpensive source of chondroitin sulfate for commercial purposes.

Changes in Hydrophobic Surface of Collagen by Chondroitin Sulfate : Fluorescence Intensity Measurements with Bis-ANS as the Probe

  • Kim, Sung-Koo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.446-453
    • /
    • 1995
  • The improtant components of extracellular matrix(ECM) are collagen and chondroitin sulfate. The hydrophobic surface of collagen is one of the determining factors of diameter of collagen fiber and also is closely related to the aging phenomena. The controlling mechanism of the diameter of collagen fiber influenced by the interaction with chondroitin sulfate was evaluated using bis-ANS as a hydrophobic probe. Hydrophobic surface area of collagen molecule shielded by chondroitin sulfate was evaluated. Relative fluorescence intensity of collagen in thepresence of chondroitin sulfate was measured using bis-ANS as a hydrophobic probe. The fluorescence intensity decreased with the increase in chondroitin sulfate up to 3.8 chondroitin sulfate/collagen(mole/mole). Further increase in the ratio of chondroitin sulfate to collagen did not change the fluorescence intensity. Similar changes in the relative fluorescence intensity were observed for both rat tail and lathyrific rat skin collagen. The fluorescence intensity indicated by the binding between bis-ANS and hydrophobic sites of collagen was pH dependent, and the shielding effect of collagen-chondroitin sulfate interaction could not be detected at pH above 6.0. This is probably due to the charge repulsions caused by negative charged collagen molecules at higher pH.

  • PDF

Diffusion of Choline Chloride in Aqueous Solutions of Chondroitin Sulfate

  • Jung, Ok-Sun;Kim, Si-Joong;Kim, Hyoung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.6
    • /
    • pp.249-253
    • /
    • 1984
  • Mutual diffusion coefficients of choline chloride were determined by using the diaphragm cell method in aqueous solutions of chondroitin sulfate A at $25^{\circ}C$. The diffusion coefficients of choline chloride in 0.1g/100ml, 0.5g/100ml and 1g/100ml respectively of chondroitin sulfate solutions were compared with those of binary systems of water-choline chloride. At low concentrations, the diffusion coefficients of the choline chloride in the presence of chondroitin sulfate were significantly smaller than the values obtained in the absence of chondroitin sulfate, indicating a strong interaction between these solutes. The effect of this interaction on the diffusion of choline ion is largest at higher chondroitin sulfate concentrations and at lower choline chloride concentrations. The influence of chondroitin sulfate is overcome at higher choline chloride concentrations. Self-diffusion coefficients of choline ion in the presence of chondroitin sulfate are also obtained. Excellent agreements were obtained between the experimental data and the calculated values obtained by using the Manning's equations. These observations suggest that the interaction between choline chloride and chondroitin sulfate involves primarily a long range electrostatic effect and there is no appreciable "condensation" or binding of choline ion to the chondroitin sulfate.

A Study on Development of High Functional Materials Producing Technique using By-products from Skate Processing (1) - Development of Chondroitin Sulfate Materials using Skate Cartilages (저이용 홍어 가공 부산물을 이용한 고기능성 물질의 생산기술 개발에 관한 연구(1) - 홍어연골을 이용한 콘드로이틴 황산 소재 개발)

  • Baek, Jang-Mi;Kang, Keon-Hee;Kim, Sang-Ho;Noh, Jeong-Sook;Jeong, Kap-Seop
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.645-654
    • /
    • 2016
  • For the purpose of reuse the wasted by-products from the skate process to the health functional food or medicinal material, chondroitin sulfate was extracted from the skate cartilage with the method of hydrolysis with protease enzyme, and the contents of chondroitin sulfate and hydrolyzed protein were measured qualitatively and quantitatively. The effects of chondroitin sulfate on body weight or liver weight changes, hepatotoxicity elimination and anti-inflammatory actions were measured from in vivo test with feed-treated mice. From the hydrolytic extraction of skate cartilage with the mixture of 1% alcalase and 1% protease for 4 hours, the extraction yield of chondroitin sulfate was about 32.55%. The content and molecular weight of chondroitin sulfate was 26.63% and $2.85{\times}10^5Da$., respectively and the content ratio of chondroitin sulfate to protein was measured to 1 to 2.76 with gel permeation chromatography. For the odor component, trimethylamine decreased about 30% but almost not ammonia from chondroitin sulfate with the treatment of activated carbon. From the feeding chondroitin sulfate to mice, the control effect of body and liver weights decrease was measured, anti-inflammatory action and hepatotoxicity elimination action were also measured. From these results, process operation conditions for manufacturing of chondroitin sulfate were suggested.

Effect of Chondroitin Sulfate on Collagen Maturity and Agning (Chondroitin Sulfate가 Colagen 성숙과 노화에 미치는 영향)

  • 하배진;김미향
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.1
    • /
    • pp.45-54
    • /
    • 1999
  • The purpose of this study was to examine the increased bone loss caused by ovariectomy through monitoring the concentrations of the collagen and the pyridinoline crosslinks of collagen. The ovariectomized rats treated for 8 weeks, were divided at random into two or three groups of 10. Ovariectomies were carried out from the saline-treated group (Ovx), the estrogentreated group (Ovx+ES) and chondroitin sulfate-treated group (Ovx+CS). Sham operations were performed on the sham-operated group (Sham). Ovx+ES and Ovx+CS groups showed the remarkably increased collagen and pyridinoline amount in the bone and cartilage compared to Ovx group. And as the result of the measurement of SOD, Catalase and GPx which are antioxidant enzyme, SOD and Catalase activities in Ovx group were much higher than in Sham group. But they were significantly decreased in Ovx+CS group. Based on these results, it is supposed that estrogen and condroitin sulfate can enhance collagen synthesis and affect the pyridinoline formation in collagen fibrils through stimulating lysyl oxidase activity. And it is also thought that chondroitin sulfate can inhibit aging by reducing antioxidant enzyme.

  • PDF

Chondroitin sulfate and Phelinus linteus mushroom : skin whitening

  • Ha, Bae-Jin;Hwang, Il-Yeong;Lee, Chang-Hun;Jeong, Yeong-Gi;Gang, Hwan-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.791-795
    • /
    • 2001
  • This study was conducted to develop a new biomaterial to be used for skin whitening. The melanin elimination effect of chondroitin sulfate and phelinus linteus mushroom in rabbit back skin were evaluated. Rabbit dorsum was exposed to chronic UV irradiation(320nm) once daily for 30 days after initial melanin injection (100mg/kg). And then, chondroitin sulfate and phelinus linteus mushroom at dose of 0.7g for 30days were applied on the zone. The dorsal skin was histologically examined. Furthermore, we investigated free-radical extinction effect, antioxidation and tyrosinase activity inhibition effects. The histological study indicated that chondroitin sulfate and phelinus linteus mushroom decreasd melanine pigment significantly. As a result, chondroitin sulfate and phelinus linteus mushroom have a remarkable effect on the skin whitening by melanin elimination.

  • PDF

Preparation of High Purity Chondroitin Sulfate (고순도 콘드로이틴 황산의 제조)

  • Kim, Young-Jun;Cho, Suk-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.865-871
    • /
    • 2009
  • Chondroitin sulfate was extracted by alkali method and enzyme method from shark cartilage. In extract system, various processing parameters such as concentration of alkali and alcarase, temperature etc, have been investigated for optimization condition. The pure chondroitin sulfate was obtained by UF membrane separation. The characteristics was also investigated with gel permeation chromatograpy(GPC). The molecular weight of chondroitin sulfate was $2.7\times10^4$ Da.

Changes in an Ammonia-like Odor and Chondroitin Sulfate Contents of Enzymatic Hydrolysates from Longnose Skate (Rasa rhina) Cartilage as Affected by Pretreatment Methods

  • Choi, Joo-Hyun;Woo, Jin-Wook;Lee, Yang-Bong;Kim, Seon-Bong
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.645-650
    • /
    • 2005
  • To reduce ammonia-like odor in chondroitin sulfate, longnose skate (Rasa rhina) cartilage was processed by washing, autoclaving, and alkali pretreatments. Content of total volatile basic nitrogen (TVB-N), index of ammonia-like odor, of raw skate cartilage without pretreatment was 254 mg/100 g, whereas those of skate cartilage pretreated with washing and autoclaving increased to 630 and 636 mg/100 g, respectively. TVB-N of skate cartilage pretreated with sodium hydroxide sharply decreased to 15 mg/l00 g at optimal condition of 0.12 M and 3.6 volume of NaOH, as determined by surface response methodology of central composite design for optimization. Alkali pretreatment resulted in 97.6% deodorizing. Washing and autoclaving pretreatments had almost no effect on the yield of chondroitin sulfate (approximately 30%), whereas decreased to 16.0% after alkali pretreatment, showing chondroitin sulfate of skate cartilage as chondroitin sulfate C.

Development of High Purity Purification Method of Chondroitin Sulfate Extracted from Skate Cartilage (홍어 연골로부터 추출된 콘드로이틴 황산의 고순도 정제방법 개발)

  • Jeong, Kap-Seop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.9-17
    • /
    • 2016
  • A purification method was established for high-purity chondroitin sulfate from skate cartilage. Hydrolytic extraction of skate backbone cartilage was investigated with the proteases alcalase and protamex, and the extraction contents of chondroitin sulfate were measured with several physicochemical processes. The yield of extract from skate cartilage with $40^{\circ}Brix$ concentration was 23.3% with 2% alcalase hydrolysis, which was decreased to 8.47% and 3.37% with the first and second additional ethanol purifications, respectively. The yield was 16.62% with one ethanol purification after hydrolysis with a mixture of 1% alcalase and 1% protamex. The content of chondroitin sulfate was measured as 39.88-45.08% with different ratios of ethanol solvent. The content was 42.92% at a solvent ratio of 1:1 with alcalase protease and 45.08% with a ratio of 1:2 using a protease mixture of alcalase and protamex. The molecular weight range of chondroitin sulfate was about 110-310 thousand Da, and the purity of chondroitin sulfate was 24.87-49.92% with a mixture of alcalase and protamex in GPC analysis. The maximum purity of chondroitin sulfate was 53.93% after ultrafiltration. The odor strength of chondroitin sulfate was decreased by 33% and 38% after ethanol purification and additional filtration with activated carbon, respectively. The odor concentration of ammonia and TMA from chondroitin sulfate was decreased by 52.1% and 37.89% with activated carbon filtration and two ethanol purifications, respectively, but it was necessary to eliminate the odor components efficiently using additional physicochemical processes.

Analysis of Contaminated Heparins by the Combination of Glycosaminoglycan Degrading Enzymes and Nuclear Magnetic Resonance Spectroscopy (글리코사미노글칸 분해 효소와 핵자기공명을 이용한 오염된 헤파린 시료의 분석)

  • Im, A-Rang;Park, You-Mie;Hong, Chong-Hui;Lee, Su-Jung;Lee, Sun-Hee;Kim, Yeong-Shik
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.2
    • /
    • pp.109-117
    • /
    • 2009
  • We examined the purity of six heparin samples by using heparinase, chondroitinase, $^{1}H-NMR$, and polyacrylamide gel electrophoresis. To obtain high molecular weight contaminants from heparin samples, heparinase I - digested samples were subjected to the exhaustive microcon filtration. The filtration process removed heparin-derived di- and oligosaccharides effectively. By combining chondroitinase ABC treatment and strong anion exchange - high performance liquid chromatography, the result showed all six samples contained chondroitin sulfate as a contaminant ranging from 1.3 to 14.9%. Among them, sample S3 showed the highest content of 14.9%, which was further analyzed by chondroitinase AC treatment to confirm chondroitin sulfate B (dermatan sulfate). $^{1}H-NMR$ chemical shifts of N-acetyl groups clearly suggested the existence of chondroitin sulfate B (sample S3) and oversulfated chondroitin sulfate (samples S2 and S4) as contaminants. In addition, polyacrylamide gel electrophoresis was useful for qualitative detection on the sample's purity. These results suggest that the tools of heparinase I and chondroitinase ABC in combination with NMR spectroscopy would give very useful information for investigation of heparin contaminants such as oversulfated chondroitin sulfate and dermatan sulfate in heparin samples.