• Title/Summary/Keyword: chopped carbon fiber

Search Result 21, Processing Time 0.024 seconds

The Study of Mechanical Properties of CFRR(Carbon Fiber Reinforced Rubber) with Polyurethane Matrix (폴리우레탄 모재를 적용한 CFRR 기계적 특성 연구)

  • 이원복;노태호;권태훈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.242-245
    • /
    • 2003
  • The purpose of this study is to investigate the shear modulus, the shear strength at failure and the failure process of QLS(quadruple-lap shear) Test specimen were made of two different fiber contents CFRR and HTPB based polyurethane matrix. The CFRR specimen were prepared with 6.16% chopped carbon fiber and 11.6% chopped carbon fiber. We carried out the shear tests for three types of specimen. The shear modulus and strength of the CFRR was inspected with the increasing contents of chopped carbon fiber. In the other hand the shear strain of the CFRR was inspected with the decreasing contents of chopped carbon fiber.

  • PDF

Study on the Fabrication and the Properties of C/C Composite from Clutter Chopped Carbon Fiber by Warmer-Molding Technology

  • Chen, Jianxun;Huang, Qizhong
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.241-244
    • /
    • 2006
  • Carbon/Carbon composite was been manufactured by the technology of warmer-molding process of clutter chopped carbon fiber, using phenolic resin as an adhesive. The degree of graphitization, the microstructure and the friction properties were studied. The results show that the clutter chopped carbon fiber fully scatter in the Carbon/Carbon composite and the degree of graphitization of phenolic resin can reach up to 86.2%, this matrix carbon can form the continuous and stable graphitic thin film on the friction surface during braking process so that the composite has fine friction properties and low wear rate.

  • PDF

Mechanical Properties of Carbon Fiber/Si/SiC and Carbon Fiber/C/SiC Composites (탄소섬유/Si/SiC 및 탄소섬유/탄소/SiC 복합재의 기계적 물성)

  • 신동우;박삼식;김경도;오세민
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.8-16
    • /
    • 1999
  • Carbon woven fabric/C/SiC composites were fabricated by multiple impregnations of carbon woven fabric/carbon preform with the polymer precursor of SiC, i.e., polycarbosilane. In addition, two kinds of low density carbon/carbon preforms which had different fiber volume fraction and fiber orientation, i.e., a carbon woven fabric(${\thickapprox}$55 vol%)/carbon and a chopped carbon fiber${\thickapprox}$40 vol%)/carbon composites, were reaction-bonded with a silicon melt at 1$700^{\circ}C$ in a vacuum to fabricate dense carbon fiber/Si/SiC composites. The reaction-bonding process increased the density to ~2.1 g/$cm^3$ from 1.6 g/$cm^3$ and 1.15 g/$cm^3$ of a carbon woven and a chopped carbon preforms, respectively. All of the composites fractured with extensive fiber pull-out. The higher the density the higher the stiffness and proportional limit stress. The mechanical properties obtained from a three-point bend and tension tests were compared. The ratios of the peak tensile stresses to the bending strengths of a carbon woven and a chopped carbon composites were about one-third, respectively. The carbon woven fabric/Si/SiC composites with density of 2.06 g/$cm^3$ showed ~120 MPa of ultimate strength and ~80 MPa of proportional limit in bend testing.

  • PDF

Thermal Properties according to Content and Alignment of Carbon Fiber in Cu Matrix Composite Reinforced with Chopped Carbon Fiber (탄소 단섬유가 첨가된 Cu기지 복합재료의 섬유 분율 및 배열에 따른 열적 특성)

  • Kim, Minkyoung;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.626-634
    • /
    • 2021
  • Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.

Preparation and Electrical Properties of Carbon Paper Using Chopped Carbon Fiber (탄소 단섬유를 이용한 탄소종이 제조 및 전기전도도 특성)

  • Lee, Ji-Han;Yoo, Yoon-Jong;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • In this work, we prepared the carbon paper from chopped carbon fibers using a gas diffusion matrix in polymer electrolyte membrane fuel cells by wet processing. The process of making carbon paper using wet processing is consisted of the three steps involving the dispersion of chopped carbon fibers, the preparation of the carbon fiber web, the impregnating of phenol resin. This work was focused on finding the optimal surfactant to make the carbon paper with 2D orientation of carbon fibers by investigating the dispersion state of carbon fibers in different dispersion solutions. Furthermore, the effect of phenol resin and carbon black contents on properties of electric conductivity was analyzed. As a result, it is confirmed that the carbon fiber was well dispersed when using sodium dodecyl sulfate as a surfactant, and the carbon paper with 8 wt% of phenol and 5 wt% of carbon black contents showed the most excellent electrical property.

Structural Performance of Reinforced Concrete Beams Strengthened with Sprayed Fiber Reinforced Polymers (Sprayed FRP로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Lee, Kang-Seok;Son, Young-Seon;Lee, Moon-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.421-431
    • /
    • 2007
  • The main purpose of this study is to develop a sprayed FRP repair and strengthening method, which is a new technique for strengthening the existing concrete structures by mixing one of the carbon or glass chopped fibers and one of the epoxy or vinyl ester resins with high-speed compressed air in open air and randomly spraying the mixture onto the concrete surface. At present, the sprayed FRP repair and strengthening method using the epoxy resin has not been fully discussed. In order to investigate the material property of the sprayed FRP, this study carried out tensile tests of the material specimens, which were changed with the combinations of various variables including the length of chopped fiber and the mixture ratio of chopped fiber and resin. These variables were set to have the equal material strength, compared with that of one layer of the FRP sheet. As a result, the optimal length of glass and carbon chopped fibers was fumed out to be 38 mm, and the optimal mixture ratio between chopped fiber and resin was also turned out to be 1 : 2 from each variable. And also, the thickness of the sprayed FRP to have the equal strength to one layer of the FRP sheet was finally calculated. In is study, a series of experiments were carried out to evaluate the strengthening effects of flexural beams, shear beams and damaged beams strengthened with the sprayed FRP method, respectively. The results revealed that the strengthening effects of the flexural and shear specimens were reasonably similar to those of the FRP sheet, and the developed Sprayed FRP technique is able to be used as a strengthening scheme of existing RC building.

Variation of Mechanical Properties by Carbon Fiber Volume Percent of Carbon Fiber Reinforced Reaction Bonded SiC (탄소섬유 강화 반응소결 탄화규소의 탄소섬유 첨가량에 따른 기계적 특성 변화)

  • Yun, Sung-Ho;Yang, Jin-Oh;Cho, Young-Chul;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.373-378
    • /
    • 2011
  • The composite added with surface-coated chopped carbon fiber showed the microstructure of a 3 dimensional discretional arrangements. The fiber reinforced reaction bonded silicon carbide composite, containing the 50 vol% carbon fiber, showed the porosity of < 1 vol%, 3-point bending strength value of 250MPa and fracture toughness of 4.5 $MPa{\cdot}m^{1/2}$. As the content of carbon fiber was increased from 0 vol% to 50 vol% in the composite, fracture strength was decreased due to the increase of carbon fiber, which has a less strength than SiC and molten Si. On the other hand, the fracture toughness was increased with increasing the amount of carbon fiber. According to the polished microstructure, carbon fiber was shown to have a random 3 dimensional arrangement. Moreover, the fiber pull-out phenomenon was observed with the fractured surface, which can explain the increased fracture toughness of the composite containing high content of carbon fiber.

A Study on the Mechanical and Thermal Properties of Polyketone/Chopped Carbon Fiber Composites

  • Kim, Seonggil;Jeong, Ho-Bin;Lee, Hyeong-Su;Park, Yu-ri;Lee, Rami;Kye, Hyoungsan;Jhee, Kwang-Hwan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.345-350
    • /
    • 2019
  • In this study, aliphatic polyketone (PK)/chopped carbon fiber (CCF) composites with various CCF contents were prepared using a modular intermeshing co-rotating twin screw extruder, and their mechanical and thermal properties such as tensile, flexural, and impact strength and thermal conductivity were investigated. The amount of CCF was increased from 0 to 50 wt%. The tensile and flexural strength of the PK/CCF composites increased as the CCF content increased, but the elongation at break and impact strength was lower than that of pure PK. Thermal properties such as heat distortion temperature and thermal conductivity increased as the CCF content increased. Morphological observations revealed that fiber orientation and interface adhesion between the PK and the CCF in the PK/CCF composites were formed due to the twin screw extrusion, which contributed to improving the mechanical and thermal properties of the composites.

Evaluation on The Fracture Toughness of Chopped Strand Reinforced ALS Matrix Composites (촙트 스트랜드 강화 ALS계 복합재료의 파괴인성 평가)

  • 차용훈;김덕중;이연신;성백섭;채경수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • It is well known in the fracture mechanics community that the fracture toughness of brittle materials, such as ceramics, can be improved improves significantly when fibers are added into the material. This is because in presence of fibers the cracks cannot propagate as freely as it can in absence of them. Fibers bridge the gap between two adjacent surfaces of the crack and reduce the crack tip opening displacement, thus make it harder to propagate. Several investigators have experimentally studied how the length, diameter and volume fraction of fibers affect the fracture toughness of chopped strand reinforced matrix composite materials. In this paper, matrix used ALS, Arizona Lunar Simulant, types of fiber used carbon steels and stainless steels. To analyze quantitatively fiber reinforced ALS composites, experimental and analytical methods was progressed. Load-displacement curve is used to experimental method, and FEM analysis program using ABAQUS is used analytical method.

  • PDF