• Title/Summary/Keyword: citrus peel waste

Search Result 27, Processing Time 0.02 seconds

Adsorption Characteristics of Activated Carbon Prepared From Waste Citrus Peels by NaOH Activation (NaOH 활성화법으로 제조한 폐감귤박 활성탄의 흡착특성)

  • Kang, Kyung-Ho;Kam, Sang-Kyu;Lee, Song-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1279-1285
    • /
    • 2007
  • The activated carbon was prepared from waste citrus peels using NaOH. With the increase of NaOH ratio, iodine adsorptivity and specific surface area of the activated carbon prepared were increased, but activation yield was decreased. The optimal condition of activation was at 300% NaOH and $700^{\circ}C$ for 1.5 hr. For the activated carbon produced under optimal condition, iodine adsorptivity was 1,006 mg/g, specific surface area was $1,356 m^2/g$, and average pore diameter was $20{\sim}25{\AA}$. From the adsorption experiment for benzene vapor in fixed bed reactor, it was found that the adsorption capacity of activated carbon prepared from waste citrus peel was higher than that of activated carbon purchased from Calgon company. This result implied that the activated carbon prepared from waste citrus peel could be used for gas phase adsorption.

Development of Functional Hanji Added Citrus Peel(I) - Hanji added Korean citrus peel - (감귤박을 첨가한 기능성 한지제조 기술개발(제1보) - 한국산 감귤박 첨가 한지 -)

  • Kim, Hae-Gong;Lim, Hyun-A;Kim, So-Young;Kang, Sool-Saeng;Lee, Hyo-Yeon;Yun, Pil-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.1 s.119
    • /
    • pp.38-47
    • /
    • 2007
  • This study was carried out to develop a new application field and obtain the basic data of citrus peel as waste in Jeju island and traditional Hanji for producing functional Hanji. The results measuring physical and optical properties, water vapor permeance and antibacterial activity are as follows. It was revealed that apparent density go as down but bulk raise up in the structural view of Hanji with increasing of the addition various Korean citrus peel (citrus unshiu, cheonggyun and hanrabong peel, and citrus unshiu peel powder) percentages, and that the density of Hanji added citrus unshiu peel was higher, but bulk was lower in compared with Hanji added other kinds of peel. Those Hanji added citrus unshiu peel, cheonggyun peel, hanrabong peel and citrus unshiu powder were very great not only in the strength (breaking length, burst index, tear index and folding endurance) but also in water vapor permeant rate in comparison with Hanji. The pHs of Hanji were neutrality (7 to 8). The brightness of the Hanji added various citrus peel percentages was low in compared to Hanji, and the 40% addition of hanrabong peel was the lowest. When 40% hanrabong peel was added to Hanji, it was very yellow in the color degree. When cheonggyun peel was added to Hanji manufacture, water vapor permeant rate was highly effective. It is known that vacant space of intrafiber was reduced by image analysis of Hanji and the additions of peel of citrus unshiu, cheonggyun and hanrabong were distributed equally in the interior of Hanji. The antibacterial activity of Hanji added citrus unshiu peel is more than 98%. After all, it would be able to increase utilization of Hanji, extensively. Namely, production of high quality Hanji added functional materials is expected for new valuable industry of citrus peel and Hanji.

Removal of Cu and Pb Ions from Aqueous Solution by Waste Citrus Peel-based Activated Carbon (폐감귤박으로 합성한 활성탄에 의한 수용액 중의 Cu 및 Pb 이온의 제거)

  • Moon, Myung-Jun;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.401-410
    • /
    • 2018
  • Waste citrus peel-based activated carbon (WCAC) was prepared from waste citrus peels by activation with KOH. The removal of Cu and Pb ions from aqueous solution by the prepared WCAC was investigated in batch experiments. The solution pH significantly influenced Cu and Pb adsorption capacity and the optimum pH was 4 to 6. The adsorption of Cu and Pb ions by WCAC followed pseudo-second-order kinetics and the Langmuir isotherm model. The maximum adsorption capacity calculated by Langmuir isotherm model was 31.91 mg/g for Cu and 92.22 mg/g for Pb. As the temperature was increased from 303 K to 323 K, the ${\Delta}G^{\circ}$ value decreased from -7.01 to -8.57 kJ/mol for Cu ions and from -0.87 to -2.06 kJ/mol for Pb ions. These results indicated that the adsorption of Cu and Pb by WCAC is a spontaneous process.

Separation of Limonen from Waste Citrus Peels by Venturi Vacuum Drying and Production of Bioethanol (벤튜리 진공건조에 의한 폐 감귤박으로부터 리모넨 분리 및 바이오 에탄올 생산)

  • Seung-Geon Kim;Ho-Won Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.42-47
    • /
    • 2024
  • Limonene was separated from waste citrus peels by a vacuum drying process with a venturi, and bioethanol was produced from dried citrus peels. Vacuum drying using venturi was very effective in removing moisture and limonene compared to hot air drying and natural drying. Citrus peels prepared by venturi vacuum drying were the most suitable for ethanol fermentation. The moisture and limonene content of the citrus peels dried for 15 hours were 17.0% and 3.2%, respectively. By venturi vacuum drying, essential oil containing limonene and floral water were obtained, respectively. The amount of essential oil separated by venturi vacuum drying was 4.21 mL essential oil/kg citrus peel, 79.9% of the separated essential oil was limonene.

Adsorption Characteristics of Antibiotics Amoxicillin in Aqueous Solution with Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 제조한 활성탄을 이용한 수중의 항생제 Amoxicillin의 흡착 특성)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.369-375
    • /
    • 2018
  • Batch experiments were conducted to investigate the effects of operating parameters such as the temperature, initial concentration, contact time and adsorbent dosage on the adsorption of antibiotics amoxicillin (AMX) by waste citrus peel based activated carbon (WCAC). The kinetics and isotherm experiment data can be well described with the pseudo-second order model and the Langmuir isotherm model, respectively. The maximum adsorption capacity of AMX by WCAC calculated from the Langmuir isotherm model was 125 mg/g. The adsorption of AMX by WCAC shows that the film diffusion (external mass transfer) and the intraparticle diffusion occur simultaneously during the adsorption process. The adsorption rate is more influenced by the intraparticle diffusion than that of the external mass transfer as the particle size of WCAC increases, and the intraparticle diffusion is the rate controlling step. The thermodynamic parameters indicated that the adsorption reaction of AMX by WCAC was an endothermic and spontaneous process.

Studies on the Utilization of Korean Citrus Peel Waste -I. Drying of Citrus Peel by Hot Air- (한국산(韓國産) 감귤과피(柑橘果皮)의 효율적(效率的) 이용(利用)에 관(關)한 연구(硏究) -I. 감귤과피(柑橘果皮)의 열풍건조(熱風乾燥)에 관(關)하여-)

  • Chang, Ho-Nam;Hur, Jong-Wha
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.245-250
    • /
    • 1977
  • Experiment were conducted to find out the effective drying method of citrus peel produced in Korea by varying the temperature of hot air, surface area of peels, peels from several citrus varieties and physicochemical treatment of the peel. 1. About $3{\sim}6\;days$ were required to reduce the moisture level of the peel from 70%(wet basis) to 20% at room temperature without forced convection. 2. Drying was speeded up until the temperature of hot air reached $60^{\circ}C$. Beyond that no significant increase in drying rate was observed. About 50 minutes were needed to reduce the moisture level (dry basis) to below 10% at $60^{\circ}C$ by forced convection 3. When the peel surface area was increased twice by cutting the peel into 256 fractions, the overall drying time (the time required to reduce the moisture level to 10%, dry basis) was shortened to 15 minutes from 50 mintes of the original peel. 4. No significant difference in drying rate was observed among the peels from several citrus varieties except Shaddock jabon and Citrus ponki tanaka, which dried more slowly than others. 5. Treatment of $Ca(OH)_2$ and the pressing of the peel before drying were effective in drying only when the initial moisture content was substantially higher.

  • PDF

Response Surface Modeling for the Adsorption of Dye Eosin Y by Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 만든 활성탄을 이용한 염료 Eosin Y 흡착에서 반응표면 모델링)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.270-277
    • /
    • 2018
  • The adsorption of Eosin Y by the activated carbon (WCAC) prepared from waste citrus peel was investigated by using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. Experiments were carried out as per BBD with three input parameters, the Eosin Y concentration (Conc. : 30~50 mg/L), the solution temperature (Temp. : 293~313 K), and the adsorbent dose (Dose : 0.05~0.15 g/L). Regression analysis showed a good fit of the experimental data to the second-order polynomial model with coefficients of the determination ($R^2$) value of 0.9851 and P-value (Lack of fit) of 0.342. An optimum dye uptake of 59.3 mg/g was achieved at the dye concentration of 50 mg/L, the temperature of 333 K, and the adsorbent dose of 0.1056 g. The adsorption process of Eosin Y by WCAC can be well described by the pseudo second order kinetic model. The experimental data followed the Langmuir isotherm model.

Characteristics of Activated Carbon Prepared from Waste Citrus Peel by KOH Activation (KOH 활성화법으로 제조한 폐감귤박 활성탄의 특성)

  • Kam, Sang-Kyu;Kang, Kyung-Ho;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.649-654
    • /
    • 2017
  • An activated carbon was prepared from waste citrus peel produced in large amounts in Jeju Island, Korea, using KOH activation and its characteristics was examined. Under the condition of the KOH ratio between 100 and 300%, activation temperature from 400 to $900^{\circ}C$ and activation time from 0.5 to 1.5 h, the iodine adsorptivity of the activated carbon prepared increased but the yield decreased with respect to the increase of each conditions. The iodine adsorptivity and yield of the activated carbon prepared at the activation time of more than 1.5 h were similar to those of using 1.5 h. In addition, as the KOH ratio increased, the specific surface area and pore volume of the activated carbon increased, but the pore diameter decreased. The activated carbon has an average pore diameter of $20{\sim}25{\AA}$. Also, the activated carbon prepared at 300% KOH and $900^{\circ}C$ for 1.5 h has the highest specific surface area of $1,527m^2/g$ and iodine adsorptivity of 1,246 mg/g.

Adsorption Characteristics of Bisphenol A Using Activated Carbon Based on Waste Citrus Peel and Surface-Modified with P2O5 (P2O5로 표면 개질한 폐감귤박 활성탄에 의한 Bisphenol A의 흡착 특성)

  • Kam, Sang-Kyu;Kim, Myeong-Chan;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1095-1104
    • /
    • 2018
  • The adsorption characteristics of bisphenol A (BPA) were investigated using activated carbon based on waste citrus peel (which is abandoned in large quantities in Jeju Island), denoted as WCP-AC, and surface-modified with various $P_2O_5$ concentrations (WCP-SM-AC). Moreover, coconut-based activated carbon (which is marketed in large amounts) was surface-modified in an identical manner for comparison. The adsorption equilibrium of BPA using the activated carbons before and after surface modification was obtained at nearly 48 h. The adsorption process of BPA by activated carbons and surface-modified activated carbons was well-described by the pseudo second-order kinetic model. The experimental data in the adsorption isotherm followed the Langmuir isotherm model. With increasing $P_2O_5$ concentration (250-2,000 mg/L), the amounts of BPA adsorbed by WCP-SM-AC increased till 1,000 mg/L of $P_2O_5$; however, above 1,000 mg/L of $P_2O_5$, the same amounts adsorbed at 1,000 mg/L of $P_2O_5$ were obtained. With increasing reaction temperature, the reaction rate increased, but the adsorbed amounts decreased, especially for the activated carbon before surface modification. The amounts of BPA adsorbed by WCP-AC and WCP-SM-AC were similar in the pH range of 5-9, but significantly decreased at pH 11, and increased with increasing ionic strength due to screening and salting-out effects.

Adsorption Characteristics Analysis of Trimethoprim in Aqueous Solution by Magnetic Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design (Box-Behnken Design을 이용한 수용액 중의 Trimethoprim에 대한 폐감귤박 자성활성탄의 흡착 특성)

  • Lee, Chang-Han;Lee, Min-Gyu;Hu, Chul-Goo;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.691-706
    • /
    • 2022
  • Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, ΔH and ΔG, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.