• Title/Summary/Keyword: co-evolutionary structural design

Search Result 9, Processing Time 0.027 seconds

Co-evolutionary Structural Design Framework: Min(Volume Minimization)-Max(Critical Load) MDO Problem of Topology Design under Uncertainty (구조-하중 설계를 고려한 공진화 구조 설계시스템)

  • 양영순;유원선;김봉재
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.281-290
    • /
    • 2003
  • Co Evolutionary Structural Design(CESD) Framework is presented, which can deal with the load design and structural topology design simultaneously. The load design here is the exploration algorithm that finds the critical load patterns of the given structure. In general, the load pattern is a crucial factor in determining the structural topology and being selected from the experts어 intuition and experience. However, if any of the critical load patterns would be excluded during the process of problem formation, the solution structure might show inadequate performance under the load pattern. Otherwise if some reinforcement method such as safety factor method would be utilized, the solution structure could result in inefficient conservativeness. On the other hand, the CESD has the ability of automatically finding the most critical load patterns and can help the structural solution evolve into the robust design. The CESD is made up of a load design discipline and a structural topology design discipline both of which have the fully coupled relation each other. This coupling is resolved iteratively until the resultant solution can resist against all the possible load patterns and both disciplines evolve into the solution structure with the mutual help or competition. To verify the usefulness of this approach, the 10 bar truss and the jacket type offshore structure are presented. SORA(Sequential Optimization & Reliability Assessment) is adopted in CESD as a probabilistic optimization methodology, and its usefulness in decreasing the computational cost is verified also.

A Study on Multiobjective Genetic Optimization Using Co-Evolutionary Strategy (공진화전략에 의한 다중목적 유전알고리즘 최적화기법에 관한 연구)

  • Kim, Do-Young;Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.699-704
    • /
    • 2000
  • The present paper deals with a multiobjective optimization method based on the co-evolutionary genetic strategy. The co-evolutionary strategy carries out the multiobjective optimization in such way that it optimizes individual objective function as compared with each generation's value while there are more than two genetic evolutions at the same time. In this study, the designs that are out of the given constraint map compared with other objective function value are excepted by the penalty. The proposed multiobjective genetic algorithms are distinguished from other optimization methods because it seeks for the optimized value through the simultaneous search without the help of the single-objective values which have to be obtained in advance of the multiobjective designs. The proposed strategy easily applied to well-developed genetic algorithms since it doesn't need any further formulation for the multiobjective optimization. The paper describes the co-evolutionary strategy and compares design results on the simple structural optimization problem.

  • PDF

Co-evolutionary Structural Design Framework: Min(Volume Minimization)-Max(Critical Load) MOD Problem of Topology Design under Uncertainty (구조-하중 설계를 고려한 공진화 구조 설계시스템)

  • 양영순;유원선;김봉재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.335-347
    • /
    • 2003
  • 본 논문에서는 설계 하중에 지배되는 구조물에 있어서, 입력 파라미터들의 불확실성을 표준편차와 패턴의 변동, 두 차원에서 접근, 처리할 수 있는 방안을 제시하기 위해서 구조물에 입력으로 작용하는 하중 패턴의 결정과 구조물의 형상의 진화를 동시에 고려할 수 있는 Co-Evolutionary Structural Design framework라 명명한 새로운 구조 설계 방식을 개발하였다. 공학자의 직관과 경험 의존적인 하중을 대상으로 최적화된 구조물은, 성능에 완벽한 안전을 보장해 줄 수 없으며, 이에 관한 문제를 해결하기 위해서 주어진 상황 속에서 다양한 하중이 작용하더라도 안전할 수 있는 구조물의 설계 방식에 관해서 설명한다. 본 프레임워크는 연성을 가지는 두 Disciplinary Modules, 즉 구조 형상설계와 하중설계로 이루어지며 하중에 관한 DB로 연결되어 순차적인 MDO 설계과정을 거치게 된다. 두 Discipline은 설계과정을 거치면서 상호 견제의 틀 속에서 진화하며 기존 방식과 달리 극한 하중 패턴을 스스로 찾아서 설계 반영하는 특징을 가진다. 본 접근 방식의 유용성을 평가하기 위해서 10-bar truss 구조물과 Jacket-Type 구조물로 테스트해 보았다.

  • PDF

Optimal Design of a Linear Structural Control System Considering Loading Uncertainties (하중의 불확실성을 고려한 선형구조제어 시스템의 최적설계)

  • Park, Won-Suk;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • An optimal design method for a structural control system considering load variations due to their uncertain characteristics is studied in this paper. The conventional design problem for a control system generally deals with the optimization problem of a structural control system and interaction between the structure and the control device. This study deals with the optimization problem of a load-structure-control system and the more complicated interactions with each other. The problem of finding the load that maximizes the structural responses and the structural control system that minimizes the responses simultaneously is formulated as the min-max problem. In order to effectively obtain the optimal design variables, a co-evolutionary algorithm is adopted and, as a result, an optimal design procedure for the linear structural control system with uncertain dynamic characteristics is proposed. The example design and simulated results of an earthquake excited structure validates the proposed method.

Generalized evolutionary optimum design of fiber-reinforced tire belt structure

  • Cho, J.R.;Lee, J.H.;Kim, K.W.;Lee, S.B.
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.451-466
    • /
    • 2013
  • This paper deals with the multi-objective optimization of tire reinforcement structures such as the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type design variables and approximated by artificial neutral network, and the sensitivity analyses of these functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other multi-objective optimization problems in which the objective function, the design variables and the constraints are not continuous but discrete. Through the illustrative numerical experiments, the fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective structural optimization problems in various engineering applications.

Optimal Determination of Pipe Support Types in Flare System for Minimizing Support Cost (비용 최소화를 위한 플래어 시스템의 배관 서포트 타입 최적설계)

  • Park, Jung-Min;Park, Chang-Hyun;Kim, Tea-Soo;Choi, Dong-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.325-329
    • /
    • 2011
  • Floating, production, storage and offloading (FPSO) is a production facility that refines and saves the drilled crude oil from a drilling facility in the ocean. The flare system in the FPSO is a major part of the pressure relieving system for hydrocarbon processing plants. The flare system consists of a number of pipes and complicated connection systems. Decision of pipe support types is important since the load on the support and the stress in the pipe are influenced by the pipe support type. In this study, we optimally determined the pipe support types that minimized the support cost while satisfying the design constraints on maximum support load, maximum nozzle load and maximum pipe stress ratio. Performance indices included in the design constraints for a specified design were evaluated by pipe structural analysis using CAESAR II. Since pipe support types were all discrete design variables, an evolutionary algorithm (EA) was used as an optimizer. We successfully obtained the optimal solution that reduced the support cost by 27.2% compared to the initial support cost while all the design requirements were satisfied.

Biologically inspired soft computing methods in structural mechanics and engineering

  • Ghaboussi, Jamshid
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.485-502
    • /
    • 2001
  • Modem soft computing methods, such as neural networks, evolutionary models and fuzzy logic, are mainly inspired by the problem solving strategies the biological systems use in nature. As such, the soft computing methods are fundamentally different from the conventional engineering problem solving methods, which are based on mathematics. In the author's opinion, these fundamental differences are the key to the full understanding of the soft computing methods and in the realization of their full potential in engineering applications. The main theme of this paper is to discuss the fundamental differences between the soft computing methods and the mathematically based conventional methods in engineering problems, and to explore the potential of soft computing methods in new ways of formulating and solving the otherwise intractable engineering problems. Inverse problems are identified as a class of particularly difficult engineering problems, and the special capabilities of the soft computing methods in inverse problems are discussed. Soft computing methods are especially suited for engineering design, which can be considered as a special class of inverse problems. Several examples from the research work of the author and his co-workers are presented and discussed to illustrate the main points raised in this paper.

Weighted sum multi-objective optimization of skew composite laminates

  • Kalita, Kanak;Ragavendran, Uvaraja;Ramachandran, Manickam;Bhoi, Akash Kumar
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • Optimizing composite structures to exploit their maximum potential is a realistic application with promising returns. In this research, simultaneous maximization of the fundamental frequency and frequency separation between the first two modes by optimizing the fiber angles is considered. A high-fidelity design optimization methodology is developed by combining the high-accuracy of finite element method with iterative improvement capability of metaheuristic algorithms. Three powerful nature-inspired optimization algorithms viz. a genetic algorithm (GA), a particle swarm optimization (PSO) variant and a cuckoo search (CS) variant are used. Advanced memetic features are incorporated in the PSO and CS to form their respective variants-RPSOLC (repulsive particle swarm optimization with local search and chaotic perturbation) and CHP (co-evolutionary host-parasite). A comprehensive set of benchmark solutions on several new problems are reported. Statistical tests and comprehensive assessment of the predicted results show CHP comprehensively outperforms RPSOLC and GA, while RPSOLC has a little superiority over GA. Extensive simulations show that the on repeated trials of the same experiment, CHP has very low variability. About 50% fewer variations are seen in RPSOLC as compared to GA on repeated trials.

Role of Peptides in Antiviral (COVID-19) Therapy

  • Chelliah, Ramachandran;Daliri, Eric Banan-Mwine;Elahi, Fazle;Yeon, Su-Jung;Tyagi, Akanksha;Park, Chae Rin;Kim, Eun Ji;Jo, kyoung Hee;Oh, Deog-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.363-375
    • /
    • 2021
  • Trends in the developing era to discover and design peptide-based treatments throughout an epidemic infection scenario such as COVID-19 could progress into a more efficient and low-cost therapeutic environment. However, the weakening of proteolysis is one downside of natural peptide drugs. But, peptidomimetics may help resolve this issue. In this review, peptide and peptide-based drug discovery were summarized to target one key entry mechanism of severe coronavirus pulmonary emboli syndrome (SARS-CoV-2), which encompasses the association of the host angiotensin-converting enzyme-2 (ACE2) receptor and viral spike (S) protein. Furthermore, the benefits of proteins, peptides and other possible actions that have been studied for COVID-19 through new peptide-based treatments are discussed in the review. Lastly, an overview of the peptide-based drug therapy environment is comprised of an evolutionary viewpoint, structural properties, operational thresholds, and an explanation of the therapeutic area.