• 제목/요약/키워드: co-rotational approach

검색결과 15건 처리시간 0.037초

EDISON Co-rotational Plane Beam-Dynamic Tip Load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구 (Study on Cantilever Beam Tip Response with Various Harmonic Frequencies by Using EDISON Co-rotational Plane Beam-Dynamic Tip Load)

  • 박철우;주현식;류한열;신상준
    • 한국전산구조공학회논문집
    • /
    • 제28권5호
    • /
    • pp.477-483
    • /
    • 2015
  • 본 논문에서는 Euler-Bernoulli Beam(EB-beam) 및 신속 Fourier 변환을 이용하여 수치분석적 빔 모델 및 Co-rotational plane beam EDISON program(CR-beam)을 이용한 빔 모델의 가진주파수 변화에 따른 외팔보의 자유단 진동 연구를 수행하였다. 위의 두 빔 모델에서의 끝단에서는 진동이 시간이 지남에 따라 감소하다가 정상상태에 이르는 것을 확인하였다. 끝단에서 가진주파수가 증가함에 따라 구조적 감쇠에 의해 변위이 감소하는 경향을 보인다. 감쇠를 고려한 EB-beam과 CR-beam가 정상상태로 진입하는 경향이 비슷하나, 가진주파수는 정상상태가 나타나는 시간과 독립적임을 제시한다.

EDISON Co-rotational Plane beam-Dynamic tip load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • 박철우;주현식
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.246-250
    • /
    • 2015
  • In this paper, Timoshenko and Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

  • PDF

Linear shell elements for active piezoelectric laminates

  • Rama, Gil;Marinkovic, Dragan Z.;Zehn, Manfred W.
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.729-737
    • /
    • 2017
  • Piezoelectric composite laminates are a powerful material system that offers vast options to improve structural behavior. Successful design of piezoelectric adaptive structures and testing of control laws call for highly accurate, reliable and numerically efficient numerical tools. This paper puts focus onto linear and geometrically nonlinear static and dynamic analysis of smart structures made of such a material system. For this purpose, highly efficient linear 3-node and 4-node finite shell elements are proposed. Both elements employ the Mindlin-Reissner kinematics. The shear locking effect is treated by the discrete shear gap (DSG) technique with the 3-node element and by the assumed natural strain (ANS) approach with the 4-node element. Geometrically nonlinear effects are considered using the co-rotational approach. Static and dynamic examples involving actuator and sensor function of piezoelectric layers are considered.

Plastic analysis of steel arches and framed structures with various cross sections

  • Silva, Jessica L.;Deus, Lidiane R.R.M.;Lemes, Igor J.M.;Silveira, Ricardo A.M.
    • Steel and Composite Structures
    • /
    • 제38권3호
    • /
    • pp.257-270
    • /
    • 2021
  • This paper presents a displacement-based numerical methodology following the Euler-Bernoulli theory to simulate the 2 nonlinear behavior of steel structures. It is worth emphasizing the adoption of co-rotational finite element formulations considering large displacements and rotations and an inelastic material behavior. The numerical procedures proposed considers plasticity concentrated at the finite elements nodes, and the simulation of the steel nonlinear behavior is approached via the Strain Compatibility Method (SCM), where the material constitutive relation is used explicitly. The SCM is also applied in determining the sections bearing capacity. Moreover, the present numerical approach is not limited to a specific structural member cross-sectional typology, with the residual stress models introduced explicitly in subareas of steel cross-sections generated by a 2D discretization. Finally, results consistent with the literature and with low processing time are presented.

동적유한요소법을 이용한 유연매체의 기하비선형해석 (Geometric Nonlinear Analysis of Flexible Media Using Dynamic FEM)

  • 지중근;홍성권;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.721-724
    • /
    • 2006
  • In the development of sheet-handling machinery, it is important to predict the static and dynamic behavior of the sheets with a high degree of reliability. Flexible media is very thin, very light and very flexible so it behaves geometric nonlinearity of large displacement and large rotation but small strain. In this paper, static and dynamic analyses of flexible media are performed by dynamic FEM considering geometric nonlinearity. Mass and tangent stiffness matrices based on the Co-rotational(CR) approach are derived and numerical simulations are performed by full Newton-Raphson(FNR) method and Newmark integration scheme.

  • PDF

수평가이드에 충돌하는 유연매체의 거동에 관한 연구 (Study on the flexible media behavior impacting on the horizontal guide)

  • 지중근;홍성권;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.388-391
    • /
    • 2006
  • In the development of sheet-handling machinery, it is important to predict the static and dynamic behavior of the sheets with a high degree of reliability because the sheets are fed and stacked at such a high speed. Flexible media behaves geometric nonlinearity of large displacement and small strain. In this paper, static and dynamic analyses of flexible media are performed by FEM considering geometric nonlinearity. Linear stiffness matrix and geometric nonlinear stiffness matrix based on the Co-rotational(CR) approach are derived and numerical simulations are performed by Updated Newton-Raphson(UNR) method and Newmark integration scheme.

  • PDF

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • 제13권2호
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

출력 파형 왜율과 효율 개선을 위한 CRPWM의 전압 제어 방법 (A New Voltage Control Method in CRPWM for Improving Distortion and Efficiency at Load Side)

  • 안성찬;송종환;조규복;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1104-1107
    • /
    • 1992
  • Voltage controlled current regulated PWM(pulse width modulation) of VSI (voltage source inverter) is proposed. Adopting one degree of freedom, the voltage, the current controller shows much more improvement than conventional ones not using this method. The voltage controller or this proposal needs load's parameters, torque value, rotational speed. This voltage controller is located at converter part which links AC source and DC bus. With this proposed method, duty ratio of the inverter's switching is nearly unity for all speed and torque range. Hence, this method gets many advantages such as reducing current ripple, thermal loss, and noises and improving control performances. Theoretical approach to this voltage-current controller is performed, and the results are presented.

  • PDF

On complex flutter and buckling analysis of a beam structure subjected to static follower force

  • Wang, Q.
    • Structural Engineering and Mechanics
    • /
    • 제16권5호
    • /
    • pp.533-556
    • /
    • 2003
  • The flutter and buckling analysis of a beam structure subjected to a static follower force is completely studied in the paper. The beam is fixed in the transverse direction and constrained by a rotational spring at one end, and by a translational spring and a rotational spring at the other end. The co-existence of flutter and buckling in this beam due to the presence of the follower force is an interesting and important phenomenon. The results from this theoretical analysis will be useful for the stability design of structures in engineering applications, such as the potential of flutter control of aircrafts by smart materials. The transition-curve surface for differentiating the two distinct instability regions of the beam is first obtained with respect to the variations of the stiffness of the springs at the two ends. Second, the capacity of the follower force is derived for flutter and buckling of the beam as a function of the stiffness of the springs by observing the variation of the first two frequencies obtained from dynamic analysis of the beam. The research in the paper may be used as a benchmark for the flutter and buckling analysis of beams.

구조물의 대변형 비탄성 해석을 위한 범용 목적의 XFINAS 4절점 순수 변위 합응력 쉘요소 (A General and Versatile XFINAS 4-node Co-Rotational Resultant Shell Element for Large Deformation Inelastic Analysis of Structures)

  • 김기두;이창수
    • 대한토목학회논문집
    • /
    • 제26권3A호
    • /
    • pp.447-455
    • /
    • 2006
  • 순수변위 비선형 4절점 쉘요소의 정식화를 제안하여 철근 콘크리트, 강재및 복합재료등 범용 목적의 구조물의 해석에 적합하도록 하였다. 기하강성의 정식은 2차 운동역학적 관계를 이용하여 쉘이 중립면에서 정의되었고 이러한 기하강성은 면내응력, 휨 모멘트와 수직 전단력의 형태로 구성되어 두꺼운 판 및 쉘의 해석에 효과적이다. 가정된 자연 변형률 방법을 사용하여 전단잠김 문제를 제거한 복합 쉘 요소는 얇은 판및 쉘의 경우에도 정확한 해를 구할 수 있다. 콘크리트 경우 소성이론 및 탄소성 파괴역학에 근거한 비탄성 해석이 가능하며 강재경우 폰미스의 항복이론과 이바노브의 항복이론을 이용한 소성해석이 가능하다. 복합 재료의 수직전단 강성 행렬은 평형방정식으로부터 유도하여 구성하였다. 본 연구에서 제안한 쉘 요소는 해석 예제들이 참고문헌과 잘 일치하여 정확성이 입증되었으며 범용목적의 박판구조 해석에 적합한 것으로 사료 되었다.