• Title/Summary/Keyword: coastal aquifer

Search Result 94, Processing Time 0.027 seconds

Effects of Wave Action on Seawater Intrusion in Coastal Aquifer and Mitigation Strategies (파랑작용이 해안대수층의 해수침투에 미치는 영향 및 저감방안)

  • Lee, Woo-Dong;Jeong, Yeong-Han;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.47-59
    • /
    • 2017
  • This study conducted numerical simulations using LES-WASS-3D ver. 2.0 to analyze the seawater intrusion characteristics of the incident waves in a coastal aquifer. LES-WASS-3D directly analyzed the nonlinear interaction between the seawater and freshwater in a coastal aquifer, as well as the wave-current interaction in the coastal area. First, the LES-WASS-3D results were compared with the existing experimental results for the mean water level under wave action in the coastal aquifer and seawater penetration into the coastal aquifer. The mean water level, shape and position of the seawater-freshwater interface, and intrusion distance were well implemented in the results. This confirmed the validity and effectiveness of LES-WASS-3D. The overall seawater penetration distance increases in the coastal aquifer as a result of wave set-up and run-up in the swash zone caused by continuous wave actions, and it increases with the wave height and period. Furthermore, a numerical verification was performed by comparing the suggested existing structure and newly suggested curtain wall as a measure against seawater penetration. An existing underground dam showed a better effect with increased height. Additionally, the suggested curtain wall had a better effect when the embedded depth was increased.

Numerical Simulation on Seawater Intrusion in Coastal Aquifer using N-S Solver Based on Porous Body Model (PBM (Porous Body Model) 기반의 N-S Solver를 이용한 해안대수층의 해수침투모의)

  • Lee, Woo-Dong;Jeong, Yeong-Han;Hur, Dong-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1023-1035
    • /
    • 2015
  • This study applies 3-D N-S solver based on PBM (Porous Body Model), LED-WASS-3D ver 2.0 to directly analyze non-linear interaction of seawater-freshwater-coastal aquifer in order to simulate the seawater infiltration into coastal aquifer. This numerical simulation is the first trial in Korea, as well as unusual and new numerical analysis abroad. Firstly, to validate the applied numerical model, the validity and effectiveness was verified for the numerical model by comparing and considering it with the result of laboratory experiment for seawater-freshwater interface in coastal aquifer. And then it simulated the seawater infiltration into coastal aquifer considering the changed levels of seawater and groundwater in order to analyze the distribution characteristics of flow field and seawater-freshwater interface of coastal aquifer as the level difference between seawater and groundwater and rate of seawater level (${\Delta}h/h$) increased. In addition, the characteristics of seawater infiltration were analyzed from the vertical salinity in the coastal aquifer by ${\Delta}h/h$, which cannot be obtained from existing non-diffusion numerical models. Finally, it analyzed the effect of ${\Delta}h/h$ on the seawater infiltration distance in coastal aquifer, which was indexed.

IRF-k kriging of electrical resistivity data for estimating the extent of saltwater intrusion in a coastal aquifer system

  • Shim B. O.;Chung S. Y.;Kim H. J.;Sung I. H.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.352-361
    • /
    • 2003
  • We have evaluated the extent of saltwater intrusion from electrical resistivity distribution in a coastal aquifer system in the southeastern part of Busan, Korea. This aquifer system is divided into four layers according to the hydrogeologic characteristics and the horizontal extent of intruded saltwater is determined at each layer through the geostatistical interpretation of electrical resistivity data. In order to define the statistical structure of electrical resistivity data, variogram analysis is carried out to obtain best generalized covariance models. IRF-k (intrinsic random function of order k) kriging is performed with covariance models to produce the plane of spatial mean resistivities. The kriged estimates are evaluated by cross validation to show a good agreement with the true values and the statistics of cross validation represented low errors for the estimates. In the resistivity contour maps more than 5 m below the surface, we can see a dominant direction of saltwater intrusion beginning from the east side. The area of saltwater intrusion increases with depth. The northeast side has low resistivities less than 5 ohm-m due to the presence of saline water in the depth range of 20 m through 70 m. These results show that the application of geostatistical technique to electrical resistivity data is useful for assessing saltwater intrusion in a coastal aquifer system.

  • PDF

Transient Groundwater Flow Modeling in Coastal Aquifer

  • Li Eun-Hee;Hyun Yun-Jung;Lee Kang-Kun;Park Byoung-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.293-297
    • /
    • 2006
  • Submarine groundwater discharge (SGD) and the interface between seawater and freshwater in an unconfined coastal aquifer was evaluated by numerical modeling. A two-dimensional vertical cross section of the aquifer was constructed. Coupled flow and salinity transport modeling were peformed by using a numerical code FEFLOW In this study, we investigated the changes in groundwater flow and salinity transport in coastal aquifer with hydraulic condition such as the magnitude of recharge flux, hydraulic conductivity. Especially, transient simulation considering tidal effect and seasonal change of recharge rate was simulated to compare the difference between quasi-steady state and transient state. Results show that SGD flux is in proportion to the recharge rate and hydraulic conductivity, and the interface between the seawater and the freshwater shows somewhat retreat toward the seaside as recharge flux increases. Considered tidal effect, SGD flux and flow directions are affected by continuous change of the sea level and the interface shows more dispersed pattern affected by velocity variation. The cases which represent variable daily recharge rate instead of annual average value also shows remarkably different result from the quasi-steady case, implying the importance of transient state simulation.

  • PDF

Three-Dimensional Numerical Simulation of Impacts of Fault Existence on Groundwater Flow and Salt Transport in a Coastal Aquifer, Buan, Korea (한국 부안 지역 해안 대수층 내의 지하수 유동 및 염분 이동에 대한 단층 존재의 영향 삼차원 수치 모의)

  • Park, Ju-Hyun;Kihm, Jung-Hwi;Kim, Han-Tae;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.33-46
    • /
    • 2008
  • A series of three-dimensional numerical simulations using a generalized multidimensional hydrodynamic dispersion numerical model is performed to simulate effectively and to evaluate quantitatively impacts of fault existence on densitydependent groundwater flow and salt transport in coastal aquifer systems. A series of steady-state numerical simulations with calibration is performed first for an actual coastal aquifer system which contains a major fault. A series of steadystate numerical simulations is then performed for a corresponding coastal aquifer system which does not have such a major fault. Finally, the results of both numerical simulations are compared with each other and analyzed. The results of the numerical simulations show that the major fault produces hydrogeologically significant heterogeneity and true anisotropy in the actual coastal aquifer system, and density-dependent groundwater flow, salt transport, and seawater intrusion patterns in the coastal aquifer systems are intensively and extensively dependent upon the existence or absence of such a major fault. Especially, the major fault may act as a pathway for groundwater flow and salt transport along the direction parallel to its plane, while it may also behave as a barrier against groundwater flow and salt transport along the direction perpendicular to its plane.

Estimation of the Groundwater Discharges in Masan Bay Watershed (마산만 유역의 지하수 유출량 추정)

  • Yang Jeong-Seok;Cho Hong Yeon;Jeong Shin Taek;Kim Sang Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.213-223
    • /
    • 2004
  • The discharges of groundwater flow were estimated using Darcy's method along the coastal zone in the Masan Bay. The estimates using the information, i.e., groundwater level, location of the observation well, hydraulic conductivity, the thickness of the aquifer, and coastline length, were 1.65% of the precipitation of the watershed. The estimated groundwater discharges through fractured rock aquifer and the aquifer with sedimentary material were $0.7\times10^4$$m^2/year$and $1.0\times10^7$$m^3/year$ respectively. Whereas, the discharge estimated by KORDI (2003) using isotopes method is about 20 times larger than the estimates from this study because of the influence of the re-circulated seawater through the coastal zone aquifer. In order to quantify this effect in detail, the groundwater levels and salinity changes in the observation wells located in the coastal zone should be continuously monitored and analyzed.

Submarine Discharge and Geochemical Characteristics of Groundwater in the Southeastern Coastal Aquifer off Busan, Korea (부산 남동지역 연안 대수층내 지하수의 지화학적 특성과 유출)

  • Yang, Han-Soeb;Hwang, Dong-Woon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.3
    • /
    • pp.167-177
    • /
    • 2007
  • We measured the salinity, pH, and concentrations of $^{222}Rn$ and nutrients in groundwater in the southeastern coastal aquifer off Busan from March to September 2005 to evaluate its submarine discharge and geochemical characteristics. Salinity in coastal groundwater increased sharply at 20 m depth and exceeded 25 ppt below 40 m during the study period, indicating that a strong transition zone between fresh groundwater and seawater developed between 20 and 40 m depths. Fresh groundwater in the upper layer of this transition zone was characterized by high pH, $^{222}Rn$, dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP) and low dissolved inorganic silicate (DSi) relative to seawater in the lower layer. In addition, the vertical profiles of the $^{222}Rn$, DIN, and DIP concentrations imply that a strong advective groundwater flow occurs along the interface of fresh groundwater and seawater near 20 m depth. The geochemical constituents in coastal groundwater also showed strong seasonal variation, with the highest concentrations in summer (June 2005) due to the changes of groundwater recharge and sea level. This implies that the input of terrestrial chemical species into the coastal ocean through submarine groundwater discharge (SGD) could change seasonally. To ascertain the seasonal variation of SGD and SGD-driven chemical species fluxes, and associated ecological responses in the coastal ocean, more extensive studies are necessary using various SGD tracers or seepage meters in the future.

Estimation of Hydraulic Characteristics and Prediction of Groundwater Level in the Eastern Coastal Aquifer of Jeju Island (제주도 동부 해안대수층의 수리특성 산정과 지하수위 예측)

  • Jo, Si-Beom;Jeon, Byung-Chil;Park, Eun-Gyu;Choi, Kwang-Jun;Song, Sung-Ho;Kim, Gi-Pyo
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.661-672
    • /
    • 2014
  • Due to tidal force, it is very difficult to estimate the hydraulic parameters of high permeable aquifer near coastal area in Jeju Island. Therefore, to eliminate the impact of tidal force from groundwater level and estimate the hydraulic properties, tidal response technique has been mainly studied. In this study we have extracted 38 tidal constituents from groundwater level and harmonic constants including frequency, amplitude, and phase of each constituent using T_TIDE subroutine which is used to estimate oceanic tidal constituents, and then we have estimated hydraulic diffusivity associated with amplitude attenuation factor(that is the ratio of groundwater level amplitude to sea level amplitude for each tidal constituent) and phase lag(that is phase difference between groundwater level and sea level for each constituent). Also using harmonic constants for each constituent, we made the sinusoidal wave and then we constructed the synthesized wave which linearly combined sinusoidal wave. Finally, we could get residuals(net groundwater level) which was excluded most of tidal influences by eliminating synthesized wave from raw groundwater level. As a result of comparing statistics for synthesized level and net groundwater level, we found that the statistics for net groundwater level was more insignificant than those of synthesized wave. Moreover, in case of coastal aquifer which the impact of tidal force is even more than those of other environmental factors such as rainfall and groundwater yield, it is possible to predict groundwater level using synthesized wave and regression analysis of residuals.