• Title/Summary/Keyword: cobalt chloride

Search Result 101, Processing Time 0.036 seconds

Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase Activation in Human Cervical Cancer HeLa Cells

  • Kim, Hyun-Jeong;Yang, Seung-Ju;Kim, Yoon-Suk;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.468-474
    • /
    • 2003
  • The molecular mechanism of hypoxia-induced apoptosis has not been clearly elucidated. In this study, we investigated the involvement of extracellular signal-regulated protein kinase (ERK 1/2) in hypoxia-induced apoptosis using cobalt chloride in HeLa human cervical cancer cells. The cobalt chloride was used for the induction of hypoxia, and its $IC_{50}$ was $471.4\;{\mu}M$. We demonstrated the DNA fragmentation after incubation with concentrations more than $50\;{\mu}M$ cobalt chloride for 24 h, and also evidenced the morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signaling pathway of cobalt chloride-induced apoptosis in HeLa cells. ERK1/2 activation occurred 6 and 9 h after treatment with $600\;{\mu}M$ cobalt chloride. Meanwhile, the pretreatment of the MEK 1 inhibitor (PD98059) completely blocked the cobalt chloride-induced ERK 1/2 activation. At the same time, the activated ERK 1/2 translocated into the nucleus and phosphorylated its transcriptional factor, c-Jun. In addition, the pretreatment of PD98059 inhibited the cobalt chloride-induced DNA fragmentation and apoptotic cell death. These results suggest that cobalt chloride is able to induce apoptotic activity in HeLa cells, and its apoptotic mechanism may be associated with signal transduction via ERK 1/2.

Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase 1/2 Activation in Rat C6 Glioma Cells

  • Yang, Seung-Ju;Pyen, Jhin-Soo;Lee, In-Soo;Lee, Hye-Young;Kim, Young-Kwon;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.480-486
    • /
    • 2004
  • Brain ischemia brings about hypoxic insults. Hypoxia is one of the major pathological factors inducing neuronal injury and central nervous system infection. We studied the involvement of mitogen-activated protein (MAP) kinase in hypoxia-induced apoptosis using cobalt chloride in C6 glioma cells. In vitro cytotoxicity of cobalt chloride was tested by MTT assay. Its $IC_{50}$ value was $400\;{\mu}M$. The DNA fragment became evident after incubation of the cells with $300\;{\mu}M$ cobalt chloride for 24 h. We also evidenced nuclear cleavage with morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signal pathway of cobalt chloride-induced apoptosis in C6 cells. The activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2) started to increase at 1 h and was activated further at 6 h after treatment of 400 M cobalt chloride. In addition, pretreatment of PD98059 inhibited cobalt chloride-induced apoptotic cell morphology in Electron Microscopy. These results suggest that cobalt chloride is able to induce the apoptotic activity in C6 glioma cells, and its apoptotic mechanism may be associated with signal transduction via MAP kinase (ERK 1/2).

Role of FAK Phosphorylation in Cobalt Chloride-Induced Epithelial-to-Mesenchymal-Like Transition (Cobalt chloride에 의해 유도되는 상피-중간엽 이행에서의 국소부착 단백질의 인산화의 역할 규명)

  • Nam, Ju-Ock
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.286-291
    • /
    • 2011
  • Hypoxia is a common condition found in a wide range of solid tumors and is often associated with metastasis and poor clinical outcomes. In the present study, we found that HIF-$1{\alpha}$ was induced by cobalt chloride (500 ${\mu}M$) treatment on human lung cancer cells, A549 and H460, for 24 hr. However, cobalt chloride (500 ${\mu}M$) did not affect cell proliferation of A549 and H460 in 48 hr. Cobalt chloride (500 ${\mu}M$) additionally induced epithelial-to-mesenchymal-like transition (EMT) such as reduced E-cadherin expression and increased ${\alpha}$-SMA expression. These results were confirmed by immunofluorecence experiment in H460 cells. E-cadherin was localized on the outer cell membrane. However, when the cells were treated with 500 ${\mu}M$ cobalt chloride for 24 hr, diffuse E-cadherin staining was observed, characteristic of a migratory mesenchymal phenotype. We also found that cobalt chloride induced integrin ${\beta}3$ expression and FAK phosphorylation in human lung cancer cells using western blotting and FACS anlaysis. Our data suggest that integrin ${\beta}3$-induced FAK phosphorylation may be developed into target molecules for blocking tumor metastasis.

Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl·2H2O

  • Pu Su Zhao;Lu De Lu;Fang Fang Jian
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.334-338
    • /
    • 2003
  • The crystal structure of $[Co(phen)_2(Cl)(H_2O)] Clㆍ2H_2O$(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P1, with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)${\AA}$ ${\alpha}$=64.02(1), ${\beta}$=86.364(9), ${\gamma}=78.58(2)^°$, and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33${\AA}$). The intermolecular hydrogen bonds connect the $[Co(phen)_2(Cl)(H_2O)]1+,\;H_2O$ moieties and chloride ion.

Cobalt Chloride Induces Necroptosis in Human Colon Cancer HT-29 Cells

  • Wang, Hai-Yu;Zhang, Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2569-2574
    • /
    • 2015
  • Necroptosis, also known as "programmed necrosis", has emerged as a critical factor in a variety of pathological and physiological processes and is considered a cell type-specific tightly regulated process with mechanisms that may vary rather greatly due to the change of cell line. Here we used HT-29, a human colon cancer cell line, to establish a necroptosis model and elucidate associated mechanisms. We discovered that cobalt chloride, a reagent that could induce hypoxia-inducible $factor-1{\alpha}(HIF1{\alpha})$ expression and therefore mimic the hypoxic microenvironment of tumor tissue in some aspects induces necroptosis in HT-29 cells when caspase activity is compromised. On the other hand, apoptosis appears to be the predominant death form when caspases are functioning normally. HT-29 cells demonstrated significantly increased RIPK1, RIPK3 and MLKL expression in response to cobalt chloride plus z-VAD treatment, which was accompanied by drastically increased $IL1{\alpha}$ and IL6 expression, substantiating the notion that necrosis can induce profound immune reactions. The RIPK1 kinase inhibitor necrostatin-1 and the ROS scavenger NAC each could prevent necrosis in HT-29 cells and the efficiency was enhanced by combined treatment. Thus by building up a necroptosis model in human colon cancer cells, we uncovered that mechanically RIP kinases collaborate with ROS during necrosis promoted by cobalt chloride plus z-VAD, which leads to inflammation. Necroptosis may present a new target for therapeutic intervention in cancer cells that are resistant to apoptotic cell death.

Cobalt Chloride-Induced Down-Regulation of Puromycin-Sensitive Aminopeptidase Involved in Apoptosis of PC-3 Cells (PC-3 세포에서 cobalt chloride에 의해 down-regulation되는 puromycin-sensitive aminopeptidase의 apoptosis에 미치는 효과)

  • Lee, Suk-Hee;Kim, Hwan-Gyu
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.991-998
    • /
    • 2010
  • Hypoxia is an indicative of pro-apoptotic and anti-apoptotic biphasic effects, which appear to be dependent upon the cell type and the condition of the cells. The hypoxia-mimetic agent, cobalt chloride ($CoCl_2$), has been shown to induce apoptosis in a variety of cell types, but the mechanism by which this occurs has yet to be thoroughly elucidated. Puromycin-sensitive aminopeptidase (PSA) gene was decreasingly expressed in response to $CoCl_2$. In this report, puromycin pretreatment applied to PC-3 cells resulted in apoptosis. To determine whether PSA is involved in apoptosis, we examined the apoptotic properties of the PC-3 cells after siRNA knockdown of PSA. PSA siRNA-induced PSA silencing revealed that endogenous PSA may be involved in apoptosis of the PC-3 cells. These results indicated that PSA may perform a vital function in cell survival of the PC-3 cells.

Cobalt Chloride-Induced Downregulation of Puromycin-Sensitive Aminopeptidase Suppresses the Migration and Invasion of PC-3 Cells

  • Lee, Suk-Hee;Kim, Hwan-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.530-536
    • /
    • 2009
  • Cobalt chloride ($CoCl_2$) treatment of cells in vitro has been shown to induce cellular changes that are similar to those seen following hypoxia. To identify genes that are differentially expressed in response to treatment with $CoCl_2$, we compared the mRNA expression profiles of PC-3 cells that were treated with $CoCl_2$ with those of untreated PC-3 cells, using specific arbitrary primers and two anchored oligo(dT) primers provided in the ACP-based GeneFishing kits. The results of this study demonstrated that the puromycin-sensitive aminopeptidase (PSA) gene was down regulated in PC-3 cells that were treated with $CoCl_2$. This downregulation of PSA expression, in turn, suppressed the proliferation, migration, and invasion of PC-3 cells, as well as the secretion and expression of matrix metalloproteinase-9 (MMP-9).

Factors affecting sisomicin production by Micromonospora inyoensis (Micromonospora inyoensis에 의한 시소마이신 생산에 영향을 미치는 인자들)

  • Lee, Jae-Heung;Gil, Gwang-Hoon;Cho, Young-Je;Yoo, Moo-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.355-358
    • /
    • 1986
  • The effects of cobalt chloride, methionine, and various carbon sources on the sisomicin production by M. inyoensis NRRL 3292 were investigated. It was found that both cobalt chloride and methionine exerted a greater stimulatory effect on sisomicin formation. Kinetic studies with various carbon sources revealed thai polysaccharide such as starch or dextrin was found io be better than glucose for sisomicin production Moreover, the relatively low concentration of dissolved carbon dioxide was one of the most important factors In accelerating sisomicin production during idiophase.

  • PDF

Rates and Mechanism of Reaction of Dichlorobis(ethylenediamine)Cobalt(Ⅲ) Chloride with Diethanolamine Dithiocarbamate (디에탄올아민 디티오카바메이트와 트란스-디클로로비스(에틸렌디아민)코발트(Ⅲ)이온의 반응에 대한 속도와 메카니즘)

  • Kim, Chan Woo;Kim, Chang Su
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.302-307
    • /
    • 1996
  • Diethanolamine dithiocarbamate is known to react with dichlorobis(ethylenediamine)cohalt(Ⅲ) chloride to form [Co(dtc)3](dtc=diethanolamine dithiocarbamate) in which two sulfur atoms of the dithiocarbamate are bound to cobalt. The complex is moderately soluble in acetone, but sparingly soluble in carbon disulfide. Kinetics and mechanisms of the reaction of dichlorobis(ethylenediamine)cobalt(Ⅲ) chloride with diethanolamine dithiocarbamate have been studied in aqueous solution. Activation parameters have been calculated from the kinetic data for the reaction and from these results a possible mechanism for the reaction has been proposed.

  • PDF

Coating of Cobalt Over Tungsten Carbide Powder by Wet Chemical Reduction Method

  • Hong, Hyun-Seon;Yoon, Jin-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.93-96
    • /
    • 2014
  • Cobalt coated tungsten carbide-cobalt composite powder has been prepared through wet chemical reduction method. The cobalt sulfate solution was converted to the cobalt chloride then the cobalt hydroxide. The tungsten carbide powders were added in to the cobalt hydroxide, the cobalt hydroxide was reduced and coated over tungsten carbide powder using hypo-phosphorous acid. Both the cobalt and the tungsten carbide phase peaks were evident in the tungsten carbide-cobalt composite powder by X-ray diffraction. The average particle size measured via scanning electron microscope, particle size analysis was around 380 nm and the thickness of coated cobalt was determined to be 30~40 nm by transmission electron microscopy.