• Title/Summary/Keyword: cobalt chloride solution

Search Result 25, Processing Time 0.031 seconds

Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Kim, Dong Hee;Yu, Jae Keun
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.662-669
    • /
    • 2016
  • In order to identify changes in the nature of the particles due to changes in the inflow rate of the raw material solution, the present study was intended to prepare nano-sized cobalt oxide ($Co_3O_4$) powder with an average particle size of 50 nm or less by spray pyrolysis reaction using raw cobalt chloride solution. As the inflow rate of the raw material solution increased, droplets formed by the pyrolysis reaction showed more divided form and the particle size distribution was more uneven. As the inflow rate of the solution increased from 2 to 10 ml/min, the average particle size of the formed particles increased from about 25 nm to 40 nm, while the average particle size did not show significant changes when the inflow rate increased from 10 to 50 ml/min. XRD analysis showed that the intensity of the XRD peaks increased remarkably when the inflow rate of the solution increased from 2 to 10 ml/min. On the other hand, the peak intensity stayed almost constant when the inflow rate increased from 10 to 50 ml/min. With the increase in the inflow rate from 2 to 10 ml/min, the specific surface area of the particles decreased by approximately 20 %. On the contrary, the specific surface area stayed constant when the inflow rate increased from 10 to 50 ml/min.

Synthesis of TiC/Co Composite Powder by the Spray Thermal Conversion of Metallic Salt Solution (금속염용액의 분무열분해에 의한 TiC/Co복합분말 제조)

  • 이길근;문창민;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.228-234
    • /
    • 2003
  • In the present study, the focus is on the synthesis of titanium carbide/cobalt composite powder by the spray thermal conversion process using metallic salt solution as the raw materials. Two types of oxide powders of Ti-Co-O system were prepared by the spray drying of two types of metallic salt solutions : titanium chloride-cobalt nitrate and $TiO_2$ powder-cobalt nitrate solutions. These oxide powders were mixed with carbon black, and then these mixtures were carbothermal reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixtures during carbothermal reduction were analysed using XRD and TG-DTA. In the case of using the titanium chloride-cobalt nitrate solution, it could not be obtained TiC/Co composite powder due to contamination of the impurities during the spray drying of the solution. However, in tile case of using the $TiO_2$ powder-cobalt nitrate scullion, TiC-15 wt. %Co composite powder could be synthesized by the spray thermal conversion process. The synthesized TiC-15 wt. %Co composite powder at 120$0^{\circ}C$ for 2 hours has average particle size of 150 nm.

Studies on Optical-fiber Sensor to Monitor Temperature using Reversible Thermochromic Gel Type Cobalt (II) Chloride/Polyvinyl Butyral (가역 감온 변색 겔형 염화 코발트/polyvinyl butyral을 이용한 온도 감지 광섬유 센서 연구)

  • Hwang, KiSeob;Park, JeaHee;Ha, KiRyong;Lee, JunYoung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.436-442
    • /
    • 2014
  • In this study, we developed an optical-fiber sensor using cobalt chloride solution to monitor temperature in real-time between long distance points unaffected by the electro-magnetic wave and the vibration. Cobalt chloride solutions were made using 10% water and 90% ethanol (v/v) solution. The transmittance of these solutions was analyzed on 655 nm using UV-Visible spectrometer regarding temperature change. Also 30.8 mM cobalt chloride solution was gelled by dissolving polyvinyl butyral and the transmittance of this was analyzed on 655 nm regarding temperature change. The results of transmittance and optical power measurement showed decrease of both transmittance and optical power with increase of temperature from 66.8% and 149.5 nW at $25^{\circ}C$ to 7.1% and 48 nW at $70^{\circ}C$, respectively. These results support the possibility of gelled cobalt chloride/polyvinyl butyral as an optical-fiber sensor to monitor temperature change.

New Analytical Method for Separation and Identification of Heavy Metals (I) (중금속의 분리 및 검출을 위한 분석화학적 연구 (제 1 보). 새로운 분리방법의 개발)

  • Kim, Youn-Doo;Bae, Jun-Heon;Shin, Young-Kook
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.231-235
    • /
    • 1987
  • In 10M chloride (4M HCl + 6M LiCl) solution, cobalt, but not nickel, formed complex anion (${CoCl_3}^-$), and this anion was extracted by a liquid anion exchanger with Amberlite LA-2. The ion exchange capacity was 2.175meq of cobalt complex per unit ml of Amberlite LA-2. Upon eluting the resin with 0.4M nitric acid, the cobalt complex was stripped and transfered into eluate quantitatively. By using this separation method in the chloride solution dissolved with 50mg of cobalt (II) and 500mg of nikel(II), recovery of cobalt were 99.6 percent.

  • PDF

Application of Spray Pyrolysis Process for the Preparation of Nano Sized Cobalt Oxide Powder

  • Kim, Dong Hee;Seo, Dong Jun;Yu, Jae Keun
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • In this study, nano-sized cobalt oxide powder with an average particle size below 50 nm was prepared from a cobalt chloride solution by the spray pyrolysis process. The influences of reaction temperature on the properties of the generated powder were examined. The average particle size of the particles formed based on the spray pyrolysis process at a reaction temperature of $700^{\circ}C$ is roughly 20 nm. Moreover, most of these particles cannot appear with an independent type, thereby coexisting in a droplet type. When the reaction temperature increases to $800^{\circ}C$, the average particle size not only increases to roughly 40 nm but also shows a more dense structure while the ratio of particles which shows a polygonal form significantly increases. As the reaction temperature increases to $900^{\circ}C$, the distribution of the particles is from roughly 70 nm to 100 nm, while most of the particle surface is more intricately close and forms a polygonal shape. When the reaction temperature increases to $1000^{\circ}C$, the particle size distribution of the powder shows an existing form from 80 nm to at least 150 nm in an uneven form. As the reaction temperature increases, the XRD peak intensity gradually increases, yet the specific surface area gradually decreases.

Rates and Mechanism of Reaction of Dichlorobis(ethylenediamine)Cobalt(Ⅲ) Chloride with Diethanolamine Dithiocarbamate (디에탄올아민 디티오카바메이트와 트란스-디클로로비스(에틸렌디아민)코발트(Ⅲ)이온의 반응에 대한 속도와 메카니즘)

  • Kim, Chan Woo;Kim, Chang Su
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.302-307
    • /
    • 1996
  • Diethanolamine dithiocarbamate is known to react with dichlorobis(ethylenediamine)cohalt(Ⅲ) chloride to form [Co(dtc)3](dtc=diethanolamine dithiocarbamate) in which two sulfur atoms of the dithiocarbamate are bound to cobalt. The complex is moderately soluble in acetone, but sparingly soluble in carbon disulfide. Kinetics and mechanisms of the reaction of dichlorobis(ethylenediamine)cobalt(Ⅲ) chloride with diethanolamine dithiocarbamate have been studied in aqueous solution. Activation parameters have been calculated from the kinetic data for the reaction and from these results a possible mechanism for the reaction has been proposed.

  • PDF

Effect of the Concentration of Cobalt Chloride Solution for the Preparation of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Yu, Jae Keun;Cha, Kwang Yong;Seo, Dong Jun;Han, Joung Su;Jang, Jae Bum;Lee, Yong Hwa;Kim, Dong Hee
    • Korean Journal of Materials Research
    • /
    • v.24 no.6
    • /
    • pp.277-284
    • /
    • 2014
  • Using the spray pyrolysis process, nano-sized cobalt oxide powder with average particle size below 50 nm was prepared from cobalt chloride solution. The influences of the raw material solution on the properties of the powder formed examined. When the concentration of Co was low(20 g/L), the average particle size of the powder formed was roughly 20 nm, and the cohesion between these particles was significantly strong. When the concentration of Co increased to 100 g/L, the droplets nearly failed to exist in circular form and reflected a severely divided form. Furthermore, the average size of the particles formed was roughly 40 nm, and the particles reflected a polygonal form. When the solution was increased to nearly saturation level (Co at 200 g/L), the particle size distribution reflected significant unevenness due to severe droplet division while the surface also reflected significant unevenness. Furthermore, the average size of the particles formed increased significantly to 70 nm. The results of XRD analysis showed that the strength of the peaks reflected very little change when the concentration of Co was increased from 20 g/L to 50 g/L. Alternatively, when the concentration was increased to 100 g/L, the strength of the peaks increased compared to when the concentration was 50 g/L. However, when the concentration was increased to 200 g/L, the strength of the peaks failed to reflect significant change compared to when the concentration was 100 g/L. The specific surface area dramatically decreased by 30 % when the concentration of Co was increased from 20 g/L to 50 g/L. Alternatively, when the concentration of Co the solution increased to 100 g/L, the specific surface area decreased by roughly 15 %. Furthermore, when the concentration of Co was increased to nearly saturation level(200 g/L), the specific surface area decreased by roughly 35%.

Coating of Cobalt Over Tungsten Carbide Powder by Wet Chemical Reduction Method

  • Hong, Hyun-Seon;Yoon, Jin-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.93-96
    • /
    • 2014
  • Cobalt coated tungsten carbide-cobalt composite powder has been prepared through wet chemical reduction method. The cobalt sulfate solution was converted to the cobalt chloride then the cobalt hydroxide. The tungsten carbide powders were added in to the cobalt hydroxide, the cobalt hydroxide was reduced and coated over tungsten carbide powder using hypo-phosphorous acid. Both the cobalt and the tungsten carbide phase peaks were evident in the tungsten carbide-cobalt composite powder by X-ray diffraction. The average particle size measured via scanning electron microscope, particle size analysis was around 380 nm and the thickness of coated cobalt was determined to be 30~40 nm by transmission electron microscopy.

In Line Plastic-Optical-Fiber Temperature Sensor

  • Seo, Hyejin;Shin, Jong-Dug;Park, Jaehee
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.238-242
    • /
    • 2021
  • In this paper, we present an in line plastic-optical-fiber (POF) temperature sensor based on intensity modulation. The in line POF temperature sensor is composed of a POF, including an in-fiber micro hole filled with reversible thermochromic material, the transmittance of which depends on temperature. The reversible thermochromic material was cobalt chloride/polyvinyl butyral gel. A cobalt chloride solution of concentration 30.8 mM was formulated using 10% water/90% ethanol (v/v) solution, and gelled by dissolving polyvinyl butyral in this solution. Four types of in line POF sensors, with in line micro holes of four different diameters, were fabricated to measure temperature in the range of 25 to 75 ℃. The output optical power of all of these in line POF temperature sensors was inversely proportional to the temperature; the relation between output power and temperature was approximately linear, and the sensitivity was proportional to the diameter of the in-fiber micro hole. The experimental results indicate that an in line POF sensor can be used effectively for measuring moderate temperatures.

Hydrodynamic and Chloride Ion Effects on Corrosion of Cobalt in Bicarbonate Buffer Solution (Bicarbonate 완충용액에서 코발트의 부식에 대한 대류와 염화이온의 영향)

  • Kim, Youn-Kyoo;Chon, Jung-Kyoon
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.6
    • /
    • pp.479-486
    • /
    • 2007
  • Bicarbonate 완충용액에서 Co-RDE를 이용하여 RDE 회전속도와 완충용액 속의 염화이온이 Co의 부식과 부동화에 미치는 영향을 연구하였다. Co-RDE의 회전속도가 부식에 미치는 영향은 Levich 식과 일치하였으며 부동화 막을 파괴하는데 염화이온의 효과가 큼을 알 수 있었다. 혼합 전위 이론을 사용하여 대류확산 조건에서 회전속도의 증가에 따라 부식전위가 양의 방향으로 증가하는 모형을 발견하였다. Tafel 영역에서 Co의 용해반응과 수소가 발생하는 환원반응은 전하이동과 물질이동을 이용하여 설명할 수 있었다.