• Title/Summary/Keyword: coherent signal

Search Result 280, Processing Time 0.025 seconds

A New Algorithm for Resolving Narrowband Coherent Signals Incident on a General Array (임의 배열 안테나로 입사하는 협대역 코히어런트 신호의 분리를 위한 새로운 알고리즘)

  • 박형래;김영수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.7
    • /
    • pp.989-1002
    • /
    • 1995
  • In this paper, we propose a new algorithm, so called the Signal Decorrelation via Virtual Translation of Array (SDVTA) algorithm, for estimating the directions of arrival(DOA's) of narrowband coherent signals incident on a general array. An effective procedure is composed of transforming the steering matrix of the original array into that of the virtually translated sensor array and taking the average of the transformed covariance matrices in order to decorrelate the coherent signals. The advantage of this approach is in that 1) it can estimate the DOA's of m-1 coherent signals(M : the number of array sensors) since the effective aperture size is never reduced. 2) a geometry of array is unrestricted for solving the narrowband coherency problem. 3) the efficiency of signal decorrelation does not depend on the phase differences between coherent signals unlike the Coherent Signal Subspace Method (CSM). Simulation results are illustrated to demonstrate the superior performance of this new algorithm in comparison with the normal MUSIC and examine the comparative performance with the various choices of the optimal transformation matrix under coherent signal environments.

  • PDF

Performance Analysis of Acquisition Methods for DGPS Reference Receiver under Noisy Environment

  • Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.107-112
    • /
    • 2006
  • The previous acquisition method of GPS receiver for reference station adopts not only the coherent integration method but also the non-coherent integration method in order to enhance sensitivity under noisy environment. However, under noisy environment, the previous GPS signal acquisition method causes the non-coherent integration loss which is a major factor among losses that can be caused during GPS signal acquisition. The non-coherent integration loss also increases with the strength of the received noise. This paper has intention of analyzing the performance of the GPS signal acquisition method proposed to effectively enhance sensitivity of DGPS reference receiver under noisy environment. This paper presents that the proposed GPS signal acquisition method suppresses the non-coherent integration loss through post-processing simulation. Furthermore, with regard to the mean acquisition time, it is shown that the number of search cells of the proposed GPS signal acquisition method is much fewer than that of the previous GPS signal acquisition method.

  • PDF

Analysis of GPS Signal Acquisition Performance

  • Li, Xiaofan;Manandhar, Dinesh;Shibasaki, Ryosuke
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.229-234
    • /
    • 2006
  • Acquisition is to detect the presence of the GPS signal. Once the signal is detected, the estimated frequency and code phase are passed to a tracking loop to demodulate the navigation data. In order to detect the weak signal, multiple length of data integration is always needed. In this paper, we present five different acquisition approaches based on circular correlation and Fast Fourier Transform (FFT), using coherent as well as non-coherent integration techniques for the multiple length of collected GPS satellite signal. Moreover a general approach of determining the acquisition threshold is introduced based on noise distribution which has been proved effective, and independent of the hardware. In the end of this paper, the processing speed and acquisition gain of each method are illustrated, compared, and analyzed. The results show that coherent approach is much more time consuming compared to noncoherent approaches, and in the case of multiple length of data integration from 2ms to 8ms, the processing times consumed by the fastest non-coherent acquisition method are only 25.87% to 1.52% in a single search, and 34.76% to 1.06% in a global search of those in the coherent acquisition. However, coherent acquisition also demonstrates its better performance in the acquisition gain, and in the case of 8ms of data integration it is 4.23 to 4.41 dB higher than that in the non-coherent approaches. Finally, an applicable scheme of combining coherent and non-coherent acquisition approaches in the development of a real-time Software GPS receiver in the University of Tokyo is provided.

  • PDF

Research on the Influence of Polarization Aberration on Heterodyne Efficiency in Space Coherent Laser Communication System

  • Zheng, Yang;Piao, Yu
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2022
  • Heterodyne efficiency is an indicator to evaluate the performance of space coherent laser communication systems. It is affected by signal light and local oscillator (LO) light amplitude, phase and polarization state. In this paper, based on the common heterodyne efficiency, a heterodyne efficiency model that can reflect polarization aberration of optical system is proposed. The heterodyne efficiency is analyzed when the signal light and the LO light are linearly polarized or circularly polarized. For a coherent communication optical system, when the incident signal light is right-circularly polarized light and the incident LO light is 45° linear polarized light. Based on the three-dimensional ray tracing theory and the heterodyne efficiency proposed in this paper, the change of polarization states and the distribution of heterodyne efficiency of the signal light and LO light influenced by the optical system's polarization aberration are analyzed. Analysis shows that the heterodyne efficiency model proposed in this paper can be used to evaluate coherent communication systems and reflect the influence of optical system polarization aberration.

A Study on the Desired Target Signal Estimation using MUSIC and LCMV Beamforming Algorithm in Wireless Coherent Channel

  • Lee, Kwan Hyeong
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.177-184
    • /
    • 2020
  • In this paper, we studied to direction of arrival (DoA) estimation to use DoA and optimum weight algorithms in coherent interference channels. The DoA algorithm have been considerable attention in signal processing with coherent signals and a limited number of snapshots in a noise and an interference environment. This paper is a proposed method for the desired signal estimation using MUSIC algorithm and adaptive beamforming to compare classical subspace techniques. Also, the proposed method is combined the updated weight value with LCMV beamforming algorithm in adaptive antenna array system for direction of arrival estimation of desired signal. The proposed algorithm can be used with combination to MUSIC algorithm, linearly constrained minimum variance beamforming (LCMV) and the weight value method to accurately desired signal estimation. Through simulation, we compare the proposed method with classical direction of in order to desired signals estimation. We show that the propose method has achieved good resolution performance better that classical direction arrival estimation algorithm. The simulation results show the effectiveness of the proposed method.

Efficient DOA Estimation of Coherent Signals Using ESPRIT (ESPRIT을 이용한 효율적인 코히런트 신호의 도래각 추정)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.164-171
    • /
    • 2012
  • ESPRIT(Estimation of Signal Parameter via Rotational Invariance Techniques) estimates DOAs(directions of arrival) of the incident signals on a sensor array by exploiting the shift invariance between its two subarrays. This paper suggests an efficient DOA estimation method based on ESPRIT when coherent signals impinge on the sensor array. When applying ESPRIT, it is necessary to find a signal subspace. Though the widely known SS(spatial smoothing) method allows us to obtain a signal subspace in the presence of coherent signals, its computational complexity is very high. Recently a CV(correlation vector) based method has been presented which is computationally simple. However, the number of resolvable signals in the method is smaller than that in the SS based method when multiple coherent signal groups are present. The proposed method in this paper, which obtains a signal subspace by utilizing only part of the correlation matrix, significantly reduces the computational complexity as compared with the SS based one, while the former is resolving the same number of coherent signals as the latter,

Cell ID Detection Schemes Using PSS/SSS for 5G NR System (5G NR 시스템에서 PSS/SSS를 이용한 Cell ID 검출 방법)

  • Ahn, Haesung;Kim, Hyeongseok;Cha, Eunyoung;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.870-881
    • /
    • 2020
  • This paper presents cell ID (cell identity) detection schemes using PSS/SSS (primary synchronization signal/secondary synchronization signal) for 5G NR (new radio) system and evaluates the detection performance. In this paper, we consider two cell ID detection schemes, i.e. two-stage detection and joint detection schemes. The two-stage detection scheme consists of two stages which estimate a channel gain between a transmitter and receiver and detect the PSS and SSS sequences. The joint detection scheme jointly detects the PSS and SSS sequences. In addition, this paper presents coherent and non-coherent combining schemes. The coherent scheme calculates the correlation value for the total length of the given PSS and SSS sequences, and the non-coherent combining scheme calculates the correlation within each group by dividing the total length of the sequence into several groups and then combines them non-coherently. For the detection schemes considered in this paper, the detection error rates of PSS, SSS and overall cell ID are evaluated and compared through computer simulations. The simulation results show that the joint detection scheme outperforms the two-stage detection scheme for both coherent and non-coherent combining schemes, but the two-stage detection scheme can greatly reduce the computational complexity compared to the joint detection scheme. In addition, the non-coherent combining detection scheme shows better performance under the additive white Gaussian noise (AWGN), fixed, and mobile environments.

An Efficient Assisted-GPS Acquisition Method in Weak Signal Environment (약 신호 환경에서 효율적인 A-GPS 초기동기 방법)

  • 박상현;이상정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.96-102
    • /
    • 2004
  • For sensitivity enhancement, the general assisted-GPS acquisition method adopts not only the coherent accumulation technique but also the non-coherent accumulation technique since the long coherent accumulation period increases the number of frequency search cells. But the non-coherent accumulation technique causes tile squaring loss, which is a dominant factor among the acquisition losses of assisted GPS dealing with weak GPS signals. This paper derives the squaring loss of the previous assisted-GPS acquisition method and proposes an assisted-GPS acquisition method for solving the problem of squaring loss in weak signal environment. In this paper, it is explained that the proposed assisted-GPS acquisition method prevents the squaring loss using a coupled coherent accumulation technique and the number of search cells of the proposed assisted-GPS acquisition method is much smaller than that of the previous assisted-GPS acquisition method. Finally, through the simulation by the GPS simulator, the acquisition success rate of the proposed assisted-GPS acquisition method is compared with that of the previous assisted-GPS acquisition method and the acquisition improvements are shown in weak signal environment.

Receiver Front-End of Radar for the Coherent Operation (코히어런트 동작을 위한 레이다 수신기 전단부)

  • Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • When the magnetron is employed as a radar transmitter source, the receiver needs to detect the frequency and the phase of the transmitting signal for the coherent operation. The local oscillator frequency is tuned for the stable intermediate frequency and the coherent oscillator generates the stable signal which is phase-locked to the transmitting signal. In this paper, we designed and implemented the receiver front-end including AFC(Automatic Frequency Control) circuit, STALO(Stable Local Oscillator) and COHO (Coherent Oscillator) unit.

  • PDF

Direction-of-arrival estimation of coherent spread spectrum signals using signal eigenvector (신호 고유벡터를 이용한 코히어런트 대역확산 신호의 도래각 추정)

  • 김영수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.515-523
    • /
    • 1997
  • A high resolution algorithm is presented for resolving multiple coherent spread spectrum signals that are incident on an equispaced linear array. Unlike the conventional noise-eigenvector based methods, this algorithm makes use of the signal eigenvectors of the array spectral density matrix that are associates with eigenvalues that are larger than the sensor noise level. Simulation results are shown to demonstate the high performance of the proposed approach in comparison with MUSIC in which coherent signal subspace method (CSM) is employed.

  • PDF