• Title/Summary/Keyword: collision deformation

Search Result 131, Processing Time 0.024 seconds

Lightweight and Performance of Anti-Collision Strength of Automobiles Based on Carbon Fiber Composites

  • Zhang, Hongtao
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.525-531
    • /
    • 2019
  • The widespread use of automobiles has greatly increased energy demand and exhaust gas pollution. In order to save energy, reduce emissions and protect the environment, making lightweights automobiles is an effective measure. In this paper, carbon fiber composites and automobile B-pillars are briefly introduced, and then the mechanical properties and impact resistance of the DC590 steel B-pillars and carbon fiber composites B-pillars are simulated by the ABAQUS finite element software. The results show that the quality of compound B-pillars is reduced by 50.76 % under the same dimensions, and the mechanical property of unit mass is significantly better than that of metal B-pillars. In the course of a collision, the kinetic energy of the two B-pillars is converted into internal energy, but the total energy remains the same; the converted internal energy of the composite B-pillars is greater, the deformation is smaller and the maximum intrusion and intrusion speed is also smaller, indicating that the anti-collision performance of the composite B-pillars is excellent. In summary, the carbon fiber composites can not only reduce the quality of the B-pillars, but also improve their anti-collision performance.

A study on Analysis of Impact Deceleration Characteristics of Railway Freight Car (1차원 해석방법을 이용한 화차의 충돌가속도 분석)

  • Son, Seung Wan;Jung, Hyun Seung;Hwang, Jun Hyeok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.32-38
    • /
    • 2020
  • This study examined the problems of existing vehicles to propose alternatives to improve the crashworthiness of railway freight cars through collision acceleration analysis using a one-dimensional collision analysis method. A collision scenario of railway shunting and crash accidents was selected from the collision accident cases and international standards. A one-dimensional collision simulation using LS-DYNA was performed according to those scenarios. As a result, the acceleration level of the freight wagon was calculated to be under 2g and was predicted to meet the EN 12663 standard in the shunting situation. On the other hand, the result of crash simulation with an impact velocity between 10 and 15 km/h revealed the shock absorber capacity of the railway coupler to be insufficient in a crash situation, resulting in increased acceleration, and carbody deformation could be predicted. As a method of improving the crashworthiness, a deformation tube-type energy absorber was applied to the coupler system, and collision analysis was performed again with new energy absorption strategy. Overall, the simulation showed that the acceleration level was decreased by 12% of the conventional freight-car energy absorption system.

Effect of Mechanical Milling Parameters on the Particle Size of Silver Flake (은 플레이크 분말의 입자크기에 미치는 기계적 밀링 공정변수의 영향)

  • Lee, Gil-Geun;Jeong, Hae-Young
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.307-312
    • /
    • 2014
  • This study is focused on investigating the relation between the particle size of silver flake powder and mechanical milling parameters. Mechanical milling parameters such as ball size, impeller rotation speed and milling time of the attrition ball-mill were controlled to produce silver flake powder. The particle size of the silver flake powder increased with increasing ball size and impeller rotation speed. The change of the particle size of the silver flake powder with mechanical milling parameters was analyzed based on balls motion in the mill container of the attrition ball-mill. The silver flake particles were formed at the elastic deformation area of the ball due to the collision between balls. The change of the particle size of the silver flake powder with mechanical milling parameters well consists with the change of the collision energy of ball with parameters mentioned above.

A bridge-vessel collision force of steel fender system (강재 충돌방호공의 선박충돌력산정)

  • Lee Gye Hee;Ko Jae Yong;Yu Won Jin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.127-133
    • /
    • 2003
  • In this study, the impact analysis for the steel fender system that designed for protection of collision between vessel and bridge was performed The size of objective collision vessel assumed as 3000 dead weight tonnage(DWT). The impact forces and the impact energies were estimated by formulas of several design codes, and the steel fender system was designed based on the estimated forces and energy. The bow of objective vessel was modeled as rigid body, and bridge substructure was modeled as fixed support. Since, the impact analysis have the dynamic nonlinear features, such as, material nonlinear, large deformation and contact, explicit structural analysis program was used The analysis results presented that the impact forces formulas in codes have the sufficient conservativeness.

  • PDF

A Study on the Bow Collapse of High-Speed Passenger Craft in Collision with Bridge Pier (고속 여객선의 교각 충돌에 대한 연구)

  • 신영식;박명규
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • During the last 10 years, the various type of high speed craft have been greatly developed, and since around of 1990 the large size of high speed passenger and/or cargo vessels are also introduced and took into the service in the various routes over the world. In a marine traffic way some bridge need to build across a rivers, cannals or a waterways. This one will be an obstruction and potential risk of collision in the way of high speed craft. Accordingly some of collision accident have been reported, which were caused by a lost control, wind and hydrodynamic forces, fog or human errors. In this paper a high speed craft having 40 m length is assumed to be collided with a circular type of bridge piers at right angle. The mode of deformation, penetration depth of collapse, impact forces, reduction of speed, loss of kinetic energy, and influence of scantlings, etc. have been calculated in each speed with a time variation to find a maximum values within a limit, and are graphically presented.

  • PDF

A bridge-vessel collision analysis of steel fender system (강재 충돌방호공의 선박충돌해석)

  • 이계희;홍현석;백종균
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.71-78
    • /
    • 2003
  • In this study, the impact analysis for the steel fender system that designed for protection of collision between vessel and bridge was peformed. The size of objective collision vessel assumed as 3000 dead weight tonnage(DWT). The impact forces and the impact energies were estimated by formulas of several design codes, and the steel fender system was designed based on the estimated forces and energy. The bow of objective vessel was modeled as rigid body, and bridge substructure was modeled as fixed support. Since, the impact analysis have the dynamic nonlinear features, such as, material nonlinear, large deformation and contact, explicit structural analysis program was used. The analysis results presented that the impact forces formulas in codes have the sufficient conservativeness.

  • PDF

Structural Design and Analysis for the Reinforced Frame of Vehicle (자동차 보강 프레임에 대한 구조 설계 및 해석)

  • Kang, Sung-Soo;Cho, Seong-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.504-510
    • /
    • 2010
  • To achieve the structural safety of the vehicle, designs in various cases are carried out by using CATIA program. It is promoted the relaxation of stresses by collisions from the front portion, the side part and the rear portion of the vehicle. In this study, we conduct a variety of design of frames for the light weight frame of the vehicle and structural analysis, to protect the driver by adding reinforced frame. In the case of such a collision, there are maximum stresses greater than yield strength of steel and a very large local plastic deformation at the collision part.

Prediction of the Performance of a Deformation Tube for Railway Cars using the Slab Method (초등해법을 이용한 철도차량 변형튜브 성능 예측에 관한 연구)

  • Kim, J.M.;Lee, J.K.;Kim, K.N.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.124-129
    • /
    • 2016
  • Recently, global railway car makers are competing desperately in developing high-speed railway vehicles. Ensuring passenger safety during a crash is essential. The design and the manufacturing of energy absorbing components are becoming more and more important. A deformation tube is a typical passive energy absorbing component for railway cars. In the current study the slab method was used to predict the energy absorbing capability of a deformation tube during the early design stage. The usefulness of the prediction method is verified through the comparisons between the results of FE simulations and those of the prediction method.

Study on an efficient modeling for the impact analysis of a flexible body employing Hertzian contact theory (Hertz 접촉이론을 이용한 탄성체의 충돌 해석을 위한 효율적 모델링에 관한 연구)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.838-843
    • /
    • 2008
  • Since thickness deformation and lateral deflection often occurs during the collision of flexible bodies, they should be considered simultaneously in the impact analysis. The thickness deformation, however, cannot be considered in beam/shell theory since the thickness is assumed to be constant in the theory. So, solid elements are employed to estimate the thickness deformation. However, the CPU time increases significantly if solid elements are employed. In the present study, a modeling method for the impact analysis of a flexible body employing Hertzian contact theory is presented. The efficiency and the accuracy of the modeling method are discussed with some numerical examples.

  • PDF

Analysis of soft deformation limitation of base-isolated structures

  • Jinwei Jiang;Baoyang Yang
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Isolation technology has been proven effective in reducing the seismic response of superstructures, where most of the deformation is concentrated in the isolation layer. However, in cases of earthquakes with intensities surpassing the fortification level of the area, or severe near-fault earthquakes, the isolation layer may experience excessive deformation, resulting in damage to the isolation bearings or collisions with the retaining wall or surrounding buildings. In this study, a finite element model using ABAQUS is established and compared with experimental test results to deeply investigate the influence of limit devices on the isolation layer and its response to the superstructure. The findings reveal that a larger limiter stiffness and a smaller reserved gap can achieve a more effective limiting effect. Nevertheless, a smaller reserved gap and a larger limiter stiffness may result in increased response of the superstructure. Therefore, rational selection of the reserved gap and limiter stiffness is crucial to reduce the acceleration response.