• Title/Summary/Keyword: collision tree

Search Result 116, Processing Time 0.028 seconds

Collision Tree Based Anti-collision Algorithm in RFID System (RFID시스템에서 충돌 트리 기반 충돌방지 알고리즘)

  • Seo, Hyun-Gon
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.5
    • /
    • pp.316-327
    • /
    • 2007
  • RFID (Radio Frequency Identification) is one of the most promising air interface technologies in the future for object identification using radio wave. If there are multiple tags within the range of the RFID tag reader, all tags send their tag identifications to the reader at the same time in response to the reader's query. This causes collisions on the reader and no tag is identified. A multi-tag identification problem is a core issue in the RFID. It can be solved by anti-collision algorithm such as slot based ALHOA algorithms and tree based algorithms. This paper, proposes a collision tree based anti-collision algorithm using collision tree in RFID system. It is a memory-less algorithm and is an efficient RFID anti-collision mechanism. The collision tree is a mechanism that can solve multi-tag identification problem. It is created in the process of querying and responding between the reader and tags. If the reader broadcasts K bits of prefix to multiple tags, all tags with the identifications matching the prefix transmit the reader the identifications consisted of k+1 bit to last. According to the simulation result, a proposed collision tree based anti-collision algorithm shows a better performance compared to tree working algorithm and query tree algorithm.

A Simple and Fast Anti-collision Protocol for Large-scale RFID Tags Identification

  • Jia, Xiaolin;Feng, Yuhao;Gu, Yajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1460-1478
    • /
    • 2020
  • This paper proposes a novel anti-collision protocol for large-scale RFID tags identification, named Bi-response Collision Tree Protocol (BCT). In BCT, two group of tags answer the reader's same query in two response-cycles respectively and independently according to the bi-response pattern. BCT improves the RFID tag identification performance significantly by decreasing the query cycles and the bits transmitted by the reader and tags during the identification. Computation and simulation results indicate that BCT improves the RFID tag identification performance effectively, e.g. the tag identification speed is improved more than 13.0%, 16.9%, and 22.9% compared to that of Collision Tree Protocol (CT), M-ary Collision Tree Protocol (MCT), and Dual Prefix Probe Scheme (DPPS) respectively when tags IDs are distributed uniformly.

A New RFID Tag Anti-Collision Algorithm Using Collision-Bit Positioning (충돌 비트 위치를 활용한 RFID 다중 태그 인식 알고리즘)

  • Lee Hyun-Ji;Kim Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4A
    • /
    • pp.431-439
    • /
    • 2006
  • RFID Anti-Collision technique is needed to avoid collision problem caused by Radio interference between tags in the same RFID Reader area. It affects the performance and reliability of the RFID System. This paper propose the QT-CBP(Query Tree with Collision-Bit Positioning) Algorithm based on the QT(Query Tree) algorithm. QT-CBP Algorithm use precise collision bit position to improve the performance. We demonstrated the proposed algorithm by simulation. Our algorithm outperformed when each tag bit streams are the more duplicate and the number of tags is increased, compared with QT.

A Study on the Tree based Memoryless Anti-Collision Algorithm for RFID Systems (RFID 시스템에서의 트리 기반 메모리래스 충돌방지 알고리즘에 관한 연구)

  • Quan Chenghao;Hong Wonkee;Lee Yongdoo;Kim Hiecheol
    • The KIPS Transactions:PartC
    • /
    • v.11C no.6 s.95
    • /
    • pp.851-862
    • /
    • 2004
  • RFID(Radio frequency IDentification) is a technology that automatically identifies objects containing the electronic tags by using radio wave. The multi-tag identification problem is the core issue in the RFID and could be resolved by the anti-collision algorithm. However, most of the existing anti-collision algorithms have a problem of heavy implementation cost and low performance. In this paper. we propose a new tree based memoryless anti-collision algorithm called a collision tracking tree algorithm and presents its performance evaluation results obtained by simulation. The Collision Tracking Tree algorithm proves itself the capability of an identification rate of 749 tags per second and the performance evaluation results also show that the proposed algorithm outperforms the other two existing tree-based memoryless algorithms, i.e., the tree-walking algorithm and the query tree algorithm about 49 and 2.4 times respectively.

Performance Analysis of Tag Identification Algorithm in RFID System (RFID 시스템에서의 태그 인식 알고리즘 성능분석)

  • Choi Ho-Seung;Kim Jae-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.47-54
    • /
    • 2005
  • This paper proposes and analyzes a Tag Anti-collision algorithm in RFID system. We mathematically compare the performance of the proposed algorithm with existing binary algorithms(binary search algorithm, slotted binary tree algorithm using time slot, and bit-by-bit binary tree algorithm proposed by Auto-ID center). We also validated analytic results using OPNET simulation. Based on analytic result, comparing the proposed Improved bit-by-bit binary tree algerian with bit-by-bit binary tree algorithm which is the best of existing algorithms, the performance of Improved bit-by-bit binary tree algorithm is about $304\%$ higher when the number of tags is 20, and $839\%$ higher when the number of tags is 200.

Anti-Collision Algorithm for Improvement of Multiple Tag Identification in RFID System (RFID 시스템에서 다중 태그 인식 개선을 위한 충돌방지 알고리즘)

  • Kim, Yong-Hwan;Ryoo, Myung-Chun;Park, Joon-Ho
    • Journal of Information Technology Services
    • /
    • v.12 no.3
    • /
    • pp.331-343
    • /
    • 2013
  • In RFID systems, the anti-collision algorithm is being improved to recognize Tag's ID within recognition area of the reader quickly and efficiently. This paper focuses on Tag collision. Many studies have been carried out to resolve Tag collision. This paper proposes a new N-ary Query Tree Algorithm to resolve more than Tag collision simultaneously, according to the value of m(2 ~ 6). This algorithm can identify more tags than existing methods by treating a maximum 6 bit collision, regardless of the continuation/non-continuation Tag's ID patterns. So, it extracts maximumly different $2^6$ bit patterns per single prefix in recognition process. The performance of N-ary Query Tree Algorithm is evaluated by theoretical analysis and simulation program.

Security Robustness of Tree based Anti-collision Algorithms (충돌방지 알고리즘의 보안 견고성)

  • Seo, Hyun-Gon;Kim, Hyang-Mi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.1
    • /
    • pp.99-108
    • /
    • 2010
  • RFID(Radio Frequency IDentification) is a technology that automatically identifies objects containing the electronic tags by using radio wave. When there are some tags in the domain of the RFID reader, the mechanism that can solve a collision between the tags occurs is necessary. The multi tag identification problem is the core issue in the RFID and could be resolved by the anti-collision algorithm. However, RFID system has another problem. The problem id user information security. Tag response easily by query of reader, so the system happened user privacy violent problem by tag information exposure. In the case, RFID system id weak from sniffing by outside. In this paper, We study of security robustness for tree-walking algorithm, query tree algorithm and advanced query tree algorithm of tree based memoryless algorithm.

Hybrid Tag Anti-Collision Algorithms in RFID System (RFID 시스템에서 하이브리드 태그 충돌 방지 알고리즘)

  • Shin, Jae-Dong;Yeo, Sang-Soo;Cho, Jung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4A
    • /
    • pp.358-364
    • /
    • 2007
  • RFID, Radio Frequency Identification, technology is a contactless automatic identification technology using radio frequency. For this RFID technology to be widely spread, the problem of multiple tag identification, which a reader identifies a multiple number of tags in a very short time, has to be solved. Up to the present, many anti-collision algorithms have been developed in order to solve this problem, and those can be largely divided into ALOHA based algorithm and tree based algorithm. In this paper, two new anti-collision algorithms combining the characteristics of these two categories are presented. And the performances of the two algorithms are compared and evaluated in comparison with those of typical anti-collision algorithms: 18000-6 Type A, Type B, Type C, and query tree algorithm.

Performance Evaluation of Anti-collision Algorithms in the Low-cost RFID System (저비용 RFID 시스템에서의 충돌방지 알고리즘에 대한 성능평가)

  • Quan Cheng-hao;Hong Won-kee;Lee Yong-doo;Kim Hie-cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1B
    • /
    • pp.17-26
    • /
    • 2005
  • RFID(Radio Frequency IDentification) is a technology that automatically identifies objects attached with electronic tags by using radio wave. For the implementation of an RFID system, an anti-collision algorithm is required to identify several tags within the RFID reader's range. Few researches report the performance trade-off among anti-collision algorithms in terms of the communications traffic between the reader and tags, the identification speed, and so on. In this paper, we analyze both tree based memoryless algorithms and slot aloha based algorithms that comprise of almost every class of existing anti-collision algorithms. To compare the performance, we evaluated each class of anti-collision algorithms with respect to low-cost RFID system with 96-bit EPC(Electronic Product Code). The results show that the collision tracking tree algorithm outperforms current tree based and aloha based algorithms by at least 2 times to 50 times.

Energy Effective Tag Anti-collision Protocol for Mobile RFID System (에너지 효율적인 모바일 RFID용 태그 충돌방지 프로토콜)

  • Cho, Yang-Hyun;Kook, Joong-Gak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2012
  • This paper is to improve an identification ratio of tags by analyzing Slotted ALOHA, Dynamic Slotted ALOHA, Binary-tree and Query-tree and shortening the tag identification time in mobile RFID. Also, it enables the stable information transmission of tags by saving backscattering power of tags through shortening of identification time. As a result, this increases the available time of the battery and accessibility to a RFID service. For this, we proposed the energy-efficient tag anti-collision protocol for mobile RFID. The proposed scheme shows advanced result in identification time and collision counts. This scheme may be the first attempt for the mobile anti-collision.