• Title/Summary/Keyword: collision-free motion

Search Result 61, Processing Time 0.022 seconds

Collision-Free Motion Planning of a Robot Using Free Arc concept (프리아크 개념을 이용한 로봇의 충돌회피 동작 계획)

  • Lee, Seok-Won;Nam, Yun-Seok;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.317-328
    • /
    • 2000
  • This paper presents an effective approach to collision-free motion planning of a robot in the work-space including time-varying obstacles. The free arc is defined as a set composed of the configuration points of the robot satisfying collision-free motion constraint at each sampling time. We represent this free arc with respect to the new coordinate frame centered at the goal configuration and there for the collision-free path satisfying motion constraint is obtained by connecting the configuration points of the free arc at each sampling mined from the sequence of free arcs the optimality is determined by the performance index. Therefore the complicated collision-free motion planning problem of a robot is transformed to a simplified SUB_Optimal Collision Avoidance Problem(SOCAP). We analyze the completeness of the proposed approach and show that it is partly guaranteed using the backward motion. Computational complexity of our approach is analyzed theoretically and practical computation time is compared with that of the other method. Simulation results for two cally and practical computation time is compared with that of the other method. Simulation results for two SCARA robot manipulators are presented to verify the efficacy of the proposed method.

  • PDF

A Study on the Collision Avoidance of Two Manipulators using Velocity Modifications (속도 변형을 이용한 두 매니퓨레이터의 충돌회피에 대한 연구)

  • Bum-Hee Lee
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.8
    • /
    • pp.563-569
    • /
    • 1988
  • This research presents several velocity modification methods for collision avoidance of two manipulators in a common workspace. Due to the distinct nature of collision avoidance between the two manipulators, a new classification of collision situations is presented and utilized in planning a collision-free path. Concepts of a collision map and velocity modification are applied for realizing collision-free motion planning. An example is shown for velocity modification of a trajectory, which shows the significance of the proposed approaches in collision-free motion planneng of two moving robots.

Conflict Detection for Multi-agent Motion Planning using Mathematical Analysis of Extended Collision Map (확장충돌맵의 수학적 분석을 이용한 다개체의 충돌탐지)

  • Yoon, Y.H.;Choi, J.S.;Lee, B.H.
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.234-241
    • /
    • 2007
  • Effective tools which can alleviate the complexity and computational load problem in collision-free motion planning for multi-agent system have steadily been demanded in robotics field. To reduce the complexity, the extended collision map (ECM) which adopts decoupled approach and prioritization is already proposed. In ECM, the collision regions which represent the potential collision of robots are calculated using the computational power; the complexity problem is not resolved completely. In this paper, we propose a mathematical analysis of the extended collision map; as a result, we formulate the collision region as an equation with 5-8 variables. For mathematical analysis, we introduce realistic assumptions as follows; the path of each robot can be approximated to a straight line or an arc and every robot moves with uniform velocity or constant acceleration near the intersection between paths. Our result reduces the computational complexity in comparison with the previous result without losing optimality, because we use simple but exact equations of the collision regions. This result can be widely applicable to coordinated multi-agent motion planning.

  • PDF

A Method for Local Collision-free Motion Coordination of Multiple Mobile Robots

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1609-1614
    • /
    • 2003
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. To implement the concept in collision avoidance of multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

  • PDF

Time-Varying Joint Constraint Map Using View Time Concept and Its Use on the Collision Avoidance of Two Robots (View Time 개념을 이용한 지변 조인트 제한 지도(JCM) 상에서의 두 로보트의 충돌 회피에 관한 연구)

  • 남윤석;이범희;고명삼;고낙용
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1770-1781
    • /
    • 1989
  • Two robots working in a common workspace may collide with each other. In this paper, a collision-free motion planning algorithm using view time concept is proposed to detect and avoid collision before robot motion. Collision may occur not only at the robot end effector but also at robot links. To detect and avoid potential collisions, the trajectory of the first robot is sampled periodically at every view time and the region in Cartesian space swept by the first robot is viewed as an obstacle during a single sampling period. The forbidden region in the joint constraint map (JCM). The JCM's are obtained in this way at every view time. An algorithm is established for collision-free motion planning of the two robot system from the sequence of JCM's and it is verified by simulations.

  • PDF

Motion planning with planar geometric models

  • Kim, Myung-Doo;Moon, Sang-Ryong;Lee, Kwan-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.996-1003
    • /
    • 1990
  • We present algebraic algorithms for collision-avoidance robot motion planning problems with planar geometric models. By decomposing the collision-free space into horizontal vertex visibility cells and connecting these cells into a connectivity graph, we represent the global topological structure of collision-free space. Using the C-space obstacle boundaries and this connectivity graph we generate exact (non-heuristic) compliant and gross motion paths of planar curved objects moving with a fixed orientation amidst similar obstacles. The gross motion planning algorithm is further extended (though using approximations) to the case of objects moving with both translational and rotational degrees of freedom by taking slices of the overall orientations into finite segments.

  • PDF

Local Collision Avoidance of Multiple Robots Using Avoidability Measure and Relative Distance

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.132-144
    • /
    • 2004
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the velocity of the robots. To implement the concept to avoid collision among multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. These repulsive force and attractive force are added to form the driving force for robot motion. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, since the usual potential field method initiates avoidance motion later than the proposed method, it sometimes fails preventing collision or causes hasty motion to avoid other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.

Collision-Free Path Planning for Robot Manipulator using SOM (SOM(Self-Organization Map)을 이용한 로보트 매니퓰레이터 충돌회피 경로계획)

  • Rhee, Jong-Woo;Rhee, Jong-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.3
    • /
    • pp.499-515
    • /
    • 1996
  • The basic function of on industrial robot system is to move objects in the workspace fast and accurately. One difficulty in performing this function is that the path of robot should be programmed to avoid the collision with obstacles, that is, tools, or facilities. This path planning requires much off-line programming time. In this study, a SOM technique to find the collision-free path of robot in real time is developed. That is, the collision-free map is obtained through SOM learning and a collision-free path is found using the map in real time during the robot operation. A learning procedure to obtain the map and an algorithm to find a short path using the map is developed and simulated. Finally, a path smoothing method to stabilize the motion of robot is suggested.

  • PDF

An Constraint Based Approach to Planning Collision-Free Navigation of Multi-AUVs with Environmental Disturbances (환경 외란을 고려한 다중 자율잠수정의 제한적 기법 기반 주행 계획기)

  • Ji, Sang-Hoon;Ko, Woo-Hyun;Jung, Yeun-Soo;Lee, Beom-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.53-65
    • /
    • 2008
  • This paper proposes the qualitative method for planning the operation of multi-AUVs with environmental disturbances, which is considered to be a very difficult task. In this paper we use an extension collision map as a collision free motion planner. The tool was originally developed for the multiple ground vehicles with no internal/external disturbance. In order to apply the method to a water environment where there are tides and waves, and currents, we analyze the path deviation error of AUVs caused by external disturbances. And we calculate safety margin for the collision avoidance on the extension collision map. Finally, the simulation result proves that the suggested method in this paper make multi-AUVs navigate to the goal point effectively with no collision among them.

Collision-avoidance path planning for spray painting robots (페인팅로보트의 충돌회피 경로계획)

  • 이정재;서석환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.545-550
    • /
    • 1991
  • Recently, the use of robots for painting operations has received much attention, as it is a powerful means for automation and quality improvement. Collision-avoidance is a key issue in the path planning for painting operations. In this paper, we develop a computationally efficient algorithm for the generation of collision-free path for two types of motion: a) Gross motion when the robot approaches the painting area, and b) Fine motion while spraying the surface. The former is a typical collision-avoidance problem, but the latter calls for special attention as the painting mechanics has to be incorporated into path planning. The developed algorithm is applied for the internal coating of the car body whose structure is the major source of collision.

  • PDF