• Title/Summary/Keyword: colloidal %24TiO_2%24

Search Result 2, Processing Time 0.017 seconds

Aging Effect on the Antimicrobial Activity of Nanometal (Au, Ag)-Titanium Dioxide Nanocomposites (Aging 효과에 따른 나노메탈(Au, Ag)-이산화티탄 복합체의 항균 활성도)

  • Park, Hye-Rim;Lee, Sang-Wha;Yoo, In-Sang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.293-296
    • /
    • 2012
  • Nanocomposites were fabricated as titanium dioxide ($TiO_2$) doped with nanometals (Au, Ag) by sonochemical reduction method and sol-gel method in order to investigate their antimicrobial activities. Then, the antimicrobial activity of the resulting samples was compared by the measurement of colony numbers survived on the agar plate incubated for 24 h after the loading E. coli on the solid-state media with the nanocomposites. The initial antimicrobial activity of the metal (Au, Ag)-doped $TiO_2$ was higher than that of the pristine $TiO_2$. Afterwards the nanocomposite samples were kept at $4^{\circ}C$ for a long time and the aged samples exhibited the different antimicrobial activity. With the elapse of aging times, Ag-doped $TiO_2$ with $TiO_2$ coating ($Ag-TiO_2$@$TiO_x$) exhibited the higher antimicrobial activity than those of $Ag-TiO_2$and $Au-TiO_2$. The $TiO_2$ coating on the $Ag-TiO_2$ may prevent the oxidation of Ag nanometals and stabilize colloidal nanocomposites.

Yield stress measurements in suspensions: an inter-laboratory study

  • Nguyen, Q. Dzuy;Akroyd, Timothy;Kee, Daniel C. De;Zhu, Lixuan
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2006
  • The first international inter-laboratory study, involving six laboratories, has been conducted to examine issues associated with yield stress measurements in suspensions. The initial focus of the project was to evaluate the reliability and reproducibility of several common yield stress measuring techniques employed in different laboratories and with different instruments. Aqueous suspensions of colloidal $TiO_2$ at concentrations of 40-70 wt% solids were used as the test fluids. A wide range of instruments and techniques employing both direct and indirect methods were used to determine the yield stress of the samples prepared according to a prescribed procedure. The results obtained indicated that although variations of results existed among different techniques, direct yield stress measurements using static methods produced more reliable and repeatable results than other methods. Variability of the yield stress measured using different techniques within any laboratory however was less significant than variability of the results among different laboratories. The nature and condition of the test suspensions was identified as the most likely factor responsible for the poor reproducibility of yield stress measurements from different laboratories.