• Title/Summary/Keyword: colloidal chitin

Search Result 53, Processing Time 0.026 seconds

Production of Red Pigment from Marine Bacterium Utilizing Colloidal Chitin. (Colloidal Chitin을 자화하는 해양세균으로부터 적색색소의 생산)

  • 류병호;김민정
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.5
    • /
    • pp.264-269
    • /
    • 2000
  • This study is that of providing a fairly practical practival guide to the use of natural pigment in food industry. A strain isolated from marine resources was carried out the production of red pigment. The pigment showed UV absorption maxima at 520 and 550 nm. The color intensity in aqueous solution was fairly stable in the ranges of pH 5~8. The strain KS-97 produced a maximum yield of red pigment at$ 25^{\circ}C$ for 72 hrs with pH 7.0. The strain KS-97 was iden-tified a Bacillus sp. based on morphological and biochemical characterization such as a rod from, motility, spore for-mation, Gram positive and catalase production. The production of red pigment indicated that the strain Ks-97 utilized at thigh concentration of colloidal chitin as carbon sources obtained maximum yield of red pigment at $25^{\circ}C$ for 72 hrs. The highest production of red pigment was observed with cultivation in medium containing 20% colloi-dal chitin, 2.5g polypeptone, 2.5g yeast extract, 1.0g $KH_2$$PO_4$, 0.01g $MgSO_4$.$6H_2$O, 0.01g $ZnSO_4$, 0.01 g $MnSO_4$(per 1).

  • PDF

Isolation of Microorganism Producing Chitinase for Chitooligosaccharides Production, Purification of Chitinase, and its Enzymatic Characteristics (Chitoologosaccharides 생산에 적합한 Chitinase를 분비하는 균주의 선별, Chitinase의 분리정제 및 반응특성)

  • 정의준;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.187-196
    • /
    • 1995
  • In order to produce fuctional chitooligosaccharides, a strain excreting mainly endo-type chitinase suitable for chitooligosaccharides production was newly screened and identified as Aspergillus fumigatus JC-19. The chitinase excretion was repressed in nutrient rich medium but stimulated by colloidal chitin indicating that the chitinase is inducible type enzyme. Maximum secretion of the enzyme was observed at pH 7.0 and 37$\circ$C . The growth and chitinase production patterns of Aspergillus fumigatus JC-19 showed that the cell growth reached maximum after 4-5 days with final chitinase concentration of 0.46 unit per ml. Excreted chitinase was purified by ammonium sulfate precipitation, colloidal chitin adsorption, anion exchange chromatography, and gel filtration, respectively, and measured M.W of 50 KDa. The enzyme reaction carried out both by crude and purified chitinase showed that the purified chitinase accumulated more chitooligosaccharides of 1-6 degree of polymerization than that of crude chitinase.

  • PDF

Purification and Characterization of Chitinase from Antagonistic Bacteria Pseudomonas sp. 3098. (생물방제균 Pseudomonas sp. 3098이 생산하는 Chitinase의 정제 및 특성)

  • 이종태;김동환;도재호;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.515-522
    • /
    • 1998
  • Plant root rotting fungi, Fusarium solani are suppressed their growth by the chitinase which is produced from the antagonistic soil bacteria. The chitinase producable antagonistic bacterium Pseudomonas sp. 3098 was selected as a powerful biocontrol agent of F. solani from ginseng rhizosphere. The antagonistic Pseudomonas sp. 3098 was able to produce a large amount of extracellular chitinase which is key enzyme in the decomposition of fusarial hypal walls. The chitinase was purified from cultural filtrate of Pseudomonas sp. 3098 by the procedure of ammonium sulfate precipitation, anion exchange chromatography, gel filtration on Bio-Gel P-100, and 1st and 2nd hydroxyapatite chromatography. The molecular mass of the purified enzyme was ca. 45 kDa on SDS-FAGE. The optimal pH and temperature for the activity of purified chitinase were 5.0 and 45$^{\circ}C$, respectively. The enzyme was stable in pH range of 5.0 to 9.0 up to 5$0^{\circ}C$ The enzyme was significantly inhibited by metal compounds such as FeCl$_2$, AgNO$_3$ and HgCl$_2$, and was slightly inhibited by p-CMB, iodoacetic acid, urea, 2,4-DNP and EDTA. The enzyme had ability of digestion on colloidal chitin and chitin from shrimp shell, but could not digest chitosan and chitin from crab shell. Km value of the enzyme was 0.11% on colloidal chitin, and the maximum hydrolysis rate of the enzyme was 34% on colloidal chitin.

  • PDF

Isolation of Chitin-utilizing Bacterium and Production of Its Extracellular Chitinase

  • Woo, Cheol-Joo;Yun, Un-Jung;Park, Heul-Doung
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.439-444
    • /
    • 1996
  • A bacterial strain, designated as WY22, producing extracellular chitinase was isolated from the soil around the Youngduck area, after enrichment culture in a medium containing $1{\%}$ (w/v) wet colloidal chitin as a sole carbon source. The isolate was identified as a strain of Bacillus sp. based on its morphological and physiological characteristics. It was observed that Bacillus sp. WY22 could inhibit the growth of Fusarium oxysporum with hyphal extention-inhibition assay on potato dextrose agar plate supplemented with $1{\%}$ collidal chitin. Optimum culture conditions of Bacillus sp. WY22 were examined for chitinase production in a chitin medium. High level production of chitinase was observed not only in the chitin medium but in a medium supplemented with $1{\%}$ N-glucosamine or lactose instead of chitin. The optimum concentrations of colloidal chitin and yeast extract were 3.0 and $0.5{\%}$, and the optimum culture conditions for initial pH of medium and temperature were 7.0 and $30^{\circ}C$, respectively, for the production of chitinase.

  • PDF

Purification and Characterization of a Chitinase from Cytophaga sp. HJ Isolated from Sea Sand

  • Lee, Dong-Mi;Noh, Hee-Jung;Lee, Kang-Man
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.839-846
    • /
    • 1999
  • An extracellular chitinase-producing bacterial strain induced by colloidal chitin was isolated from sea sand and was identified to be a member of the genus Cytophaga. The chitinase was purified successively by 30-60% ammonium sulfate fractionation, and DEAE-Bio gel A column, Octyl-Sepharose CL-4B column, and DEAE-Bio gel A column chromatographies. The enzyme had a molecular mass of 59.75 kDa, and the amino terminal amino acid sequence was ATPNAPVISW MPTDXXLQNXS. The enzyme acted better on colloidal chitin as a substrate than on chitosan. For colloidal chitin and chitosan (Degree of Acetylation, 15-25%), $K_{cat}$ values were 0.60U/mg and 0.08U/mg, respectively. HPLC analysis of the enzymatic reaction products showed that the chitinase produced mostly N-acetyl-D-glucosarnine and di-N-acetylchitobiose. The optimum temperature and pH for the enzyme were $50^{\circ}C$ and 4.0, respectively. N-Bromosuccinimide and $Hg^{2+}$ inhibited the chitinase activity as much as 90%, and $Sb^{3+}$, diethylpyrocarbonate, and $Ag^{+}$ inhibited it by 50-70%.

  • PDF

Optimal Production of N-acetyl-$\beta$-D-glucosamine Using Chitinolytic Enzyme (Chitinolytic Enzyme을 이용한 N-acetyl-$\beta$-D-glucosamine의 최적생산)

  • 이천우;이은영장상목김광
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.696-703
    • /
    • 1996
  • The bacterium Serratia marcescens QM Bl466 produces selectively large amount of chitinolytic enzymes(about 1mg/L medium). Enzymatic hydrolysis of chitin to N-acelyl-${\beta}$-D-glucosamine(NAG) is performed by a system consisting of two hydrolases : chitinase and chilobiase. Objectives of this study included optimization of a microbial host by using chitin particles for chitinase/chitobiase production and secretion and also development of batch fermentation system for high cell density cultivalion of S. marcescens QM B1466. Also, the influence of chitin source and carboxymethyl(CM) chitin on chitinase/chitobiase production and NAG production was investigated. When carboxymethyl chitin was substituted for colloidal and practical grade chitin, the chitinase activity was increased about 7∼10U/mL. In this case, the ratio of chitinase/chitobiase was 30.03U/3.44U(9:1). The highest amounts of NAG(3.0g/L) was obtained.

  • PDF

The Production and Purification of Chitinase from Aeromonas salmonicida YA7-625 (Aeromonas salmonicida YA7-625에 의한 Chitinase의 생산 및 정제)

  • 이강표;김창남;오두환;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.599-606
    • /
    • 1990
  • A chitinase-producing bacterium, Aeromonas salmonicida YA7-625, was isolated from domestic seashore muds. The preferable medium composition for the production of chitinase was as follows: colloidal chitin 1.26% (w/v), tryptone 2.95% (w/v), $MgSO_4-7H_20$ 0.15% (w/v) and $K_2HP0_4$, 0.15% (w/v) (pH 8.5). The highest enzyme production was observed after cultivation of 48 hours at 27OC. The chitinase of Aeromonas salmonicida YA7-625 was purified successively by ammonium sulfate precipitation, affinity adsorption, hydroxylapatite column chromatography and gel filtration. The optimal temperature and pH for the activity of purified chitinase were $50^{\circ}C$ and 7.0, respectively. The molecular weight of purified chitinase was ca. 200,000 daltons and apparent Km value of it was 1.276 mglml on colloidal chitin.

  • PDF

Optimization of Culture Conditions for toe Production of Chitinase (Chitinase 생성을 위한 배did 조건 최적화)

  • 차진명;석근영;차월석
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.365-369
    • /
    • 2001
  • Chitinase producing microorganism, Serratia marcescens KY, was isolated from seashore mud around Beobseongpo in Chunnam province by selective enrichment culture. As the colloidal chitin concentration increased, chitinase production was increased. But chitinase production with addition of other carbon sources (glucose, fructose, galactose, maltose, sucrose, starch) was decreased. The effect of nitrogen sources on the chitinase production with serratia marcescens KY was as fellows. The opitimum mineral concentration for chitinase production was K$_2$HPO$_4$ 0.2 g/L and MgSO$_4$ 0.20 ∼ 0.25 g/L, respectively. The effect of nitrogen sources on chitinase production by Serratia marcescens KY was increased as follows, tryptone > yeast extract > beef extract > asparagine.

  • PDF

Biocontrol of Rhizoctonia solani Damping-off of Cucumber by Bacillus cereus KJA-118 (Bacillus cereus KJA-118을 이용한 오이 모잘록병의 생물학적 방제)

  • An, Kyu-Nam;Jung, Woo-Jin;Chae, Dong-Hyun;Park, Ro-Dong;Kim, Tae-Hwan;Kim, Yong-Woong;Kim, Young-Cheol;Cha, Gyu-Suk;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.247-255
    • /
    • 2003
  • A bacterium, KJA-118 showing a strong chitinase activity, was isolated and identified as Bacillus cereus. The strain produced maximum level of chitinase, when grown aerobically at $30^{\circ}C$ for 4 days in basal broth containing 1% colloidal chitin in the initial pH adjusted to 6.0. Among various carbon sources such as crab shell powder, chitin powder, colloidal chitin, and R. solani mycelium, maximum chitinase activity was found in culture broth supplemented with R. solani mycelium. When KJA-118 was incubated with R. solani, the cell wall of the fungus was found to be completely destroyed. SDS-PAGE and active staining results revealed that KJA-118 produced three isoforms of chitinase with molecular weights of 68 kDa, 47 kDa, and 37 kDa. When the suspension of KJA-118 was treated to cucumber seedlings, reducing rate of damping-off caused by R. solani was about 28.1%.

Isolation and Characterization of Acinetobacter sp. WC-17 Producing Chitinase

  • SOON-DUCK HONG;SHIN, WOO-CHANG;DONG-SUN LEE;TAE-HO KIM;JU-HYUNG WOO;JIN-MAN LEE;JONG-GUK KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.80-86
    • /
    • 1995
  • The bacterial strain WC-17 able to produce chitinase was isolated from soil using an enrichment technique. The isolated strain was identified as Acinetobacter sp. judging by their morphological and physiological characterisitics. The optimal culture conditions for the production of chitinase of Acinetobacter sp. WC -17 are 1.5% colloidal chitin and 1 % tryptone at $30^{\circ}C$ with pH 6.5. Since the enzyme was rapidly produced in a culture supplied with chitin, glucose, or N-acetylglucosamine but not with other polymers and monosaccharide, the enzyme was considered to be an inducible enzyme. Notably N- acetylglucosamine and glucose were found to be effective inducers at low concentrations but repressors at excessive concentrations. The cultural supernatant of Acinetobacter sp. WC-17 inhibited the growth of phytopathogenic fungi such as P.oryzae, R.solani, and F.solani. Among the phytopathogenic fungi tested, P.oryzae was the most sensitive. The conventional agar plate (PDA containing 1 % colloidal chitin) method also produced the same result.

  • PDF