• Title/Summary/Keyword: color transformation

Search Result 300, Processing Time 0.025 seconds

A Study on Color Management of Input and Output Device in Electronic Publishing (I) (전자출판에서 입.출력 장치의 컬러 관리에 관한 연구 (I))

  • Cho, Ga-Ram;Kim, Jae-Hae;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.11-26
    • /
    • 2007
  • In this paper, an experiment was done where the input device used the linear multiple regression and the sRGB color space to perform a color transformation. The output device used the GOG, GOGO and sRGB for the color transformation. After the input device underwent a color transformation, a $3\;{\times}\;20\;size$ matrix was used in a linear multiple regression and the scanner's color representation of scanner was better than a digital still camera's color representation. When using the sRGB color space, the original copy and the output copy had a color difference of 11. Therefore it was more efficient to use the linear multiple regression method than using the sRGB color space. After the input device underwent a color transformation, the additivity of the LCD monitor's R, G and B signal value improved and therefore the error in the linear formula transformation decreased. From this change, the LCD monitor with the GOG model applied to the color transformation became better than LCD monitors with other models applied to the color transformation. Also, the color difference varied more than 11 from the original target in CRT and LCD monitors when a sRGB color transformation was done in restricted conditions.

  • PDF

A Study on Color Management of Input and Output Device in Electronic Publishing (II) (전자출판에서 입.출력 장치의 컬러 관리에 관한 연구 (II))

  • Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2007
  • The input and output device requires precise color representation and CMS (Color Management System) because of the increasing number of ways to apply the digital image into electronic publishing. However, there are slight differences in the device dependent color signal among the input and output devices. Also, because of the non-linear conversion of the input signal value to the output signal value, there are color differences between the original copy and the output copy. It seems necessary for device-dependent color information values to change into device-independent color information values. When creating an original copy through electronic publishing, there should be color management with the input and output devices. From the devices' three phases of calibration, characterization and color conversion, the device-dependent color should undergo a color transformation into a device-independent color. In this paper, an experiment was done where the input device used the linear multiple regression and the sRGB color space to perform a color transformation. The output device used the GOG, GOGO and sRGB for the color transformation. After undergoing a color transformation in the input and output devices, the best results were created when the original target underwent a color transformation by the scanner and digital camera input device by the linear multiple regression, and the LCD output device underwent a color transformation by the GOG model.

  • PDF

A Study on the Color Proofing CMS Development for the KOREA Offset Printing Industry (한국 오프셋 인쇄산업에 적합한 CMS 개발에 관한 연구)

  • Song, Kyung-Chul;Kang, Sang-Hoon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.121-133
    • /
    • 2007
  • The CMS(color management system) software was to enable consistent color reproduction from original to reproduction. The CMS was to create RGB monitor and printer characterization profiles and then use the profiles for device independent color transformation. The implemented CMM(color management module) used the CIELAB color space for the profile connection. Various monitor characterization model was evaluated for proper color transformation. To construct output device profile, SLI(sequential linear interpolation) method was used for the color conversion from CMYK device color to device independent CIELAB color space and tetrahedral interpolation method was used for backward transformation. UCR(under color removal) based black generation algorithm was used to construct CIELAB to CMYK LUT(lookup table). When transforming the CIE Lab colour space to CMYK, it was possible to involve the gray revision method regularized in the brightness into colour transformation process and optimize the colour transformation by black generation method based on UCR technique. For soft copy colour proofing, evaluating several monitor specialism methods showed that LUT algorithm was useful. And it was possible to simplify colour gamut mapping by constructing both the look-up table and the colour gamut mapping algorithm to a reference table.

  • PDF

$CIEL^{*}a^{*}b^{*}$-CMY nonlinear color transformation based on equi-visual perception color sampling (등시지각 색 샘플링에 기반한 $CIEL^{*}a^{*}b^{*}$-CMY로의 비선형 색변환)

  • 류승민;오현수;이철희;유미옥;최환언;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.1
    • /
    • pp.103-112
    • /
    • 2000
  • The color space transformation to link device-dependent color spaces and device-independent color spaces is essential for device characterization and cross-media color reproduction. There are various color conversion methods such as regression, 3D interpolation with LUT(look-up table), and neural network. In the color transformation with these methods, the conversion accuracy is essentially based on the sample data to be exploited for device characterization. In conventional method, color samples are uniformly selected in device-dependent space such as CMY and RGB. However, distribution of these color samples is very non-uniform in device-independent color space such as CIEL*a*b*. Accordingly, the conversion error in device-independent color space is irregular according to the distribution of the samples. In this paper, a color sampling method based on equi-visual perception is proposed to obtain approximate uniform color samples in CIEL*a*b* space. In order to evaluate transformation accuracy of proposed method, color space transformations are simulated using regression, 3D interpolation with LUT and neural network techniques, respectively.

  • PDF

Color temperature transformation of high dynamic range images

  • Kim, Yoon-Ah;Byun, Seong-Chan;Lee, Byung-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.334-336
    • /
    • 2009
  • Estimation and correction of color temperature of digital images are basis of white balance adjustment after image acquisition stage. White balance is one of the most important image processing techniques for subjective image quality enhancement. Correction of color temperature is applied for white balance adjustment or for changing the mood of a picture. A picture taken under the daylight can be changed to have a mood of sunset or cloudy day, for example. We evaluate color temperature transformation of high dynamic range images in linear and log domain, and we conclude that linear domain transformation shows better results.

  • PDF

Automatic Color Transformation of Character Using Color Transformation Matrix in 2D Animation (2D 애니메이션에서 색 변환행렬을 이용한 캐릭터의 자동 색 변환)

  • Jung, Hyun-Sun;Moon, Yong-Ho;Kim, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1240-1250
    • /
    • 2007
  • We introduce technique for color transformation of characters between scenes in 2D animation. As colors are perceived differently owing to light source, so character colors like clothes, skin and so on are colored differently owing to atmosphere of each scene. This paper is made an attempt to solve mathematically color assignment of characters which has been worked by hand so far. We can find a matrix for color transformation of characters by appling principle of color stimulus to our algorithm. In scenes of existing 2D animation, basic colors and colors under light source of characters are used for the matrix. And matrixes are obtained for each scenes of 2D animation. If we are known basic colors of some characters, you can derive character colors under other light source environments using the matrix. Therefore, this paper describes automatic color transformation of characters between animation scenes.

  • PDF

A Comparative Study of the Harmony of coloration according to Transformation of Color Area-Ratio in Traditional Korean Dress - On the Tone on Tone coloration - (색상 면적비 변화에 따른 한복배색의 조화감 비교 연구 - 톤 온 톤 배색을 중심으로 -)

  • Kang Kyung-Ja;Chu Mi-Seon;Paeng Suk-Kyung
    • Journal of the Korean Home Economics Association
    • /
    • v.43 no.5 s.207
    • /
    • pp.107-115
    • /
    • 2005
  • The purpose of this research was to compare the harmony of tone on tone coloration according to transformation of color area-ratio in traditional Korean dress. The respondents were asked to evaluate 36 stimuli of the traditional Korean skirt and jacket with different color tone. The subjects were 83 female undergraduate students. The results are as follows. For red colors, combinations of vivid/dull, vivid/dark, and light/dark made a difference in the harmony of coloration according to the transformation of color area-ratio. For yellow colors, combinations of vivid/dark, light/dull, and light/dark made a difference in the harmony of coloration according to the transformation of color area-ratio. For green colors, combinations of vivid/dull, vivid/dark, light/dull, and light/dark made a difference in the harmony of coloration according to the transformation of color area-ratio.

Color Transformation of Images based on Emotion Using Interactive Genetic Algorithm (대화형 유전자 알고리즘을 이용한 감정 기반 영상의 색변환)

  • Woo, Hye-Yoon;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.169-176
    • /
    • 2010
  • This paper proposes color transformation of images based on user's preference. Traditional color transformation method transforms only hue based on existing templates that define range of harmonious hue. It does not change saturation and intensity. Users would appreciate the resulting images that adjusted unnatural hue of images. Since color is closely related to peoples' emotion, we can enhance interaction of emotion-based contents and technologies. Therefore, in this paper, we define the range of color of each emotion for the transformation of color and perform the transformation of hue, saturation and intensity. However, the relationship of color and emotion depends on the culture and environment. To reflect these characteristics in color transformation, we propose the transformation of color that is based on user's preference and as a result, people would be more satisfied. We adopt interactive genetic algorithm to learn about user's preference. We surveyed the subject to analyze user's satisfaction about transformed images that are based on preference, and we found that people prefer transformed images to original images. Therefore, we conclude that people are more satisfied with the transformation of the templates which reflected user's preference than the one that did not.

Performance of Human Skin Detection in Images According to Color Spaces

  • Kim, Jun-Yup;Do, Yong-Tae
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.153-156
    • /
    • 2005
  • Skin region detection in images is an important process in many computer vision applications targeting humans such as hand gesture recognition and face identification. It usually starts at a pixel-level, and involves a pre-process of color spae transformation followed by a classification process. A color space transformation is assumed to increase separability between skin classes and other classes, to increase similarity among different skin tones, and to bring a robust performance under varying imaging conditions, without any complicated analysis. In this paper, we examine if the color space transformation actually brings those benefits to the problem of skin region detection on a set of human hand images with different postures, backgrounds, people, and illuminations. Our experimental results indicate that color space transfomation affects the skin detection performance. Although the performance depends on camera and surround conditions, normalized [R, G, B] color space may be a good choice in general.

  • PDF

A Study on the Performance of Human Hand Region Detection in Images According to Color Spaces (컬러공간에 따른 영상내 사람 손 영역의 검출 성능연구)

  • Kim, Jun-Yup;Do, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.186-188
    • /
    • 2005
  • Hand region detection in images is an important process in many computer vision applications. It is a process that usually starts at a pixel-level, and that involves a pre-process of color space transformation followed by a classification process. A color space transformation is assumed to increase separability between skin classes for hands and non-skin classes for other parts, to increase similarity among different skin tones, and to bring a robust performance under varying illumination conditions, without any sound reasonings. In this work, we examine if the color space transformation does bring those benefits to the problem of hand region detection on a dataset of images with different hand postures, backgrounds, people, and illuminations. Results indicate that best of the color space is the normalized RGB.

  • PDF