• Title/Summary/Keyword: combline resonator

Search Result 9, Processing Time 0.025 seconds

Coupling Structures in Combline Resonators (Combline 공진기 내의 결합구조)

  • 김병욱;김영수
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.361-365
    • /
    • 2002
  • Three types of the coupling structures in combline resonators are presented: magnetic, electric, and mixed coupling structures. The magnetic coupling structure is provided by the window, and the electric coupling is provided by the electric probe. The mixed coupling structure which is the superposition of the magnetic and electric coupling structures, is proposed for the electric coupling in combline resonators with easy tuning capability. The responses of each coupling structure are shown. A 4-pole combline filter is designed and fabricated as an application of those coupling structures, and shows good filter responses.

  • PDF

Design and fabrication of multilayer LTCC BPF using Combline structure (Combline 구조를 이용한 적층 LTCC 대역통과 필터의 설계 및 제작)

  • An, S.Y.;Lee, Y.S.;Bang, K.S.;Kim, K.C.;Kang, N.K.;Song, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.628-631
    • /
    • 2003
  • In this paper, 2.4 GHz WLAN BPF(Band Pass Filter) using LTCC(Low temperature cofiring ceramic) multilayer technology was simulated and manufactured. A modified ${\lambda}/4$ Hair-pin resonator with shunt-to ground loaded capacitor is used to shorten resonator length and improve circuit Q factor. Proposed BPF has a combline structure. Electro-magnetic Coupling between coupled strip-line resonators is controlled to provide attenuation poles at finite frequencies. The overall size of the filter is $3.2{\times}1.6{\times}1.3mm^3$. The measured result shows good agreement with simulated data.

  • PDF

Modified Compact Combline Filter Using Planar Parallel Coupled Structure with Extended Rejection Bandwidth

  • Kang, In-Ho;Wang, Kai;Li, Shang MIng
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.543-552
    • /
    • 2010
  • Modified compact combline bandpass filters are proposed based on the miniaturized quarter-wave transmission line which is composed of the parallel coupled line and lumped capacitors. The electrical length of the parallel coupled line in a resonator, which determines the size of combline bandpass filters, is just $5^{\circ}$ or $7^{\circ}$, resulting in a compact circuit area. The designed combline bandpass filter also has a wide upper stopband by suppressing the spurious passbands, not moving. Measured results of two fabricated filters centered at 400MHz show good agreement with the theoretical predications.

Cross-Coupled Microstrip Combline Bandpass Filter Using Stepped-Impedance Resonators

  • Cho, Young-Ho;Choi, Seung-Un;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.190-194
    • /
    • 2007
  • In this paper, a cross-coupled microstrip combline bandpass filter using stepped-impedance resonators(SIRs) is proposed. In order to improve the selectivity as well as the insertion loss, the SIR configuration is used. The cross coupling is also introduced to enhance the selectivity. The improvement of the insertion loss is demonstrated not only by deriving the quality factor of the SIR but through the measured performances. Both the proposed and the conventional combline bandpass filter with 5 % of fractional bandwidth at 2 GHz were fabricated and tested. Compared to the conventional combline bandpass filter, the proposed one exhibits the improved selectivity as well as the lower insertion loss characteristics.

Tunable Combline Bandpass Filter Using Cross-Coupled Stepped-Impedance Resonators with Enhanced Characteristics

  • Kim, Yoon-Hong;Cho, Young-Ho;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.4
    • /
    • pp.144-147
    • /
    • 2008
  • This paper proposes a tunable combline bandpass filter with high selectivity, constant bandwidth, and good stopband performances. A filter with these characteristics is obtained by applying cross-coupling to the conventional combline bandpass filter using stepped-impedance resonators(SIRs). For high selectivity and constant bandwidth, cross-coupling is utilized and the SIR configuration is used for enhanced stopband performances. The proposed combline tunable bandpass filter with 5% of fractional bandwidth at 1.6 GHz was fabricated and tested. The measured results showed 11.6% tunability with constant bandwidth, high selectivity and enhanced stopband characteristics.

Design Models for Electric Coupling Probe in Combline Resonators Using Neural Network (신경망을 이용한 Combline 공진기 내의 전계결합 프로브 설계 모델)

  • 김병욱;김영수
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.366-369
    • /
    • 2002
  • Two artificial neural networks (ANN) are used to model the electric coupling probe in the combline resonators. One is used to analyze and synthesize the electric probe, and the other is used to correct errors between the results of the analysis and the synthesis ANNs and the fabrication results. The ANNs for the analysis and the synthesis of the electric probe are trained using the physical dimensions of the electric probe and the corresponding coupling bandwidth which is obtained using the finite element method. The ANNs for the error correction are trained using a very small set of the measurement results. Once trained, the ANN models provide the correct result approaching the accuracy of the measurement. The results from the ANN models show fairly good agreement with those of the measurement and they can be used as good initial design values.

  • PDF

Embedded Combline Band-Pass Filter using LTCC Technology (LTCC 기술을 이용한 집적형 컴라인 대역 통과 여파기)

  • 임옥근;김용준
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.71-76
    • /
    • 2004
  • A compact embedded tapped-line combline filter with interdigital capacitors using low temperature co-fired ceramic (LTCC) technology for wireless application is proposed. Also, in-situ measurement using T-pattern microstrip resonator was performed to acquire exact knowledge of electrical properties of the LTCC substrate. The proposed filter makes it possible to realize a relatively small size, 2.7mm${\times}$2.03mm. by employing interdigital and combline structure. It shows 1.8 ㏈ insertion loss, 37.6㏈ return loss, and 280 MHz bandwidth at the center frequency of 5.09 GHz. Its small size and simple structure make it a good candidate as an integrated filter for various LTCC substrates.

  • PDF

Design of Direct Coupled Combline Filter With Tapped Line in/output For Ku-band Satellite Transponder Downconverter (직접 결합 방식의 Tapped Line 입/출력을 갖는 Ku 대역 위성 중계기 주파수 변환기용 Combline 필터의 설계)

  • 염인복;정근욱;박광량;김재명
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.22-30
    • /
    • 1997
  • The design procedure for direct coupled combline filter with tapped line in/out was summarized on Ku-band satellite frequency downconverter for stellite application. We calculated the resonator dimensions, spacing between successive resonators, ground plane spacing and tapping position of in/output lines in accordance with the given procedure. Partitions wer eemployed between adjacent resonators by inserting irises to improve filter response characteristis. The designed filter was manufactued with aluminum alloy package to reduce mass, and resonators wer machined from the filter body and in/output lines wer fixed on resonators with epoxy to survive in vibration conditon during launch.

  • PDF

Design of a Dielectric Resonator Filter with Improved Flatness Passband for WiBro band (통과대역 내 평탄도를 개선한 휴대인터넷 대역 유전체 공진기 여파기 설계)

  • Lee, Song-Yi;Yun, Sang-Won
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.13-16
    • /
    • 2005
  • Many mobile communication systems require bandpass filter with sharp skirt characteristics and consequently a filter was formed by more order. It needs to improve flatness in passband. In this paper, amplitude equalizer was used to improve the flatness of passband. We modified Chebyshev prototype filter by use of network synthesis and computed the prototype elements for Shaping filter. We designed and realized a 13-order combline bandpass filter and 4-order amplitude equalizer with coaxial dielectric resonators at WiBro band. The measured results show $\pm$0.82 dB amplitude difference in passband, 6 dB improved flatness.

  • PDF