• Title/Summary/Keyword: commutative zero points

Search Result 2, Processing Time 0.017 seconds

ON JORDAN AND JORDAN HIGHER DERIVABLE MAPS OF RINGS

  • Liu, Lei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.957-972
    • /
    • 2020
  • Let 𝓡 be a 2-torsion free unital ring containing a non-trivial idempotent. An additive map 𝛿 from 𝓡 into itself is called a Jordan derivable map at commutative zero point if 𝛿(AB + BA) = 𝛿(A)B + B𝛿(A) + A𝛿(B) + 𝛿(B)A for all A, B ∈ 𝓡 with AB = BA = 0. In this paper, we prove that, under some mild conditions, each Jordan derivable map at commutative zero point has the form 𝛿(A) = 𝜓(A) + CA for all A ∈ 𝓡, where 𝜓 is an additive Jordan derivation of 𝓡 and C is a central element of 𝓡. Then we generalize the result to the case of Jordan higher derivable maps at commutative zero point. These results are also applied to some operator algebras.

A GENERALIZATION OF COHEN-MACAULAY MODULES BY TORSION THEORY

  • BIJAN-ZADEH, M.H.;PAYROVI, SH.
    • Honam Mathematical Journal
    • /
    • v.20 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • In this short note we study the torsion theories over a commutative ring R and discuss a relative dimension related to such theories for R-modules. Let ${\sigma}$ be a torsion functor and (T, F) be its corresponding partition of Spec(R). The concept of ${\sigma}$-Cohen Macaulay (abbr. ${\sigma}$-CM) module is defined and some of the main points concerning the usual Cohen-Macaulay modules are extended. In particular it is shown that if M is a non-zero ${\sigma}$-CM module over R and S is a multiplicatively closed subset of R such that, for all minimal element of T, $S{\cap}p={\emptyset}$, then $S^{-1}M$ is a $S^{-1}{\sigma}$-CM module over $S^{-1}$R, where $S^{-1}{\sigma}$ is the direct image of ${\sigma}$ under the natural ring homomorphism $R{\longrightarrow}S^{-1}R$.

  • PDF