• Title/Summary/Keyword: complementation gene

Search Result 154, Processing Time 0.022 seconds

Functional Complementation of Escherichia coli by the rpoS Gene of the Foodborne Pathogenic Vibrio vulnificus

  • Park, Kyung-Je;Kim, Song-Hee;Kim, Min-Gon;Chung, Duck-Hwa;Ha, Sang-Do;Kim, Keun-Sung;Jahng, Deok-jin;Lee, Kyu-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1063-1066
    • /
    • 2004
  • The rpoS gene product is a global transcriptional factor, which is involved in bacterial survival under various stress conditions. An rpoS-homologous gene was cloned from a septicemia-causing pathogenic Vibrio vulnificus. Introduction of this gene as a multicopy plasmid into various E. coli strains displayed functional complementation, for examples, increased survivability of an rpoS-defective E. coli cell and induction of known $\delta^S$-dependent, stress-responding promoters of E. coli genes.

Cloning and Sequencing of the ddh Gene involved in the Novel Pathway of Lysine Biosynthesis from Brevibacterium lactofermentum

  • Kim, Ok-Mi;Kim, Hyun-Jeong;Kim, Dal-Sang;Park, Dong-Chul;Lee, Kap-Rang
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.5
    • /
    • pp.250-256
    • /
    • 1995
  • The ddh gene encoding meso-diaminopimelate (meso-DAP)-dehydrogenase (DDH) in Brevibacterium lactofermentum was isolated by complementation of the Escherichia coli dapD mutation. It was supposed from subcloning experiments and complementation tests that the evidence for DDH activity appeared in about 2.5 kb Xhol fragmented genome. The 2.5 kb Xhol fragment containing the ddh gene was sequenced, and an open reading frame of 960 bp encoding a polypeptide comprising 320 amino acids was found. Computer analysis indicated that the deduced amino acid of the B. lactofermentum ddh gene showed a high homology with that of the Corynebacterium glutamicum ddh gene.

  • PDF

Advances in research to restore vision

  • Kun Do Rhee
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.2-9
    • /
    • 2023
  • Mammalian eyes have a limited ability to regenerate once neurons degenerate. This results in visual impairment that impacts the quality of life among adult populations as well as in young children leading to lifelong consequences. Various therapies are in development to restore vision, and these include gene therapy, stem cell therapy, in-vivo transdifferentiation, and transplantation of a patient's whole eye obtained from interspecies blastocyst complementation. This review discusses advances in the research as well as hurdles that need to be resolved to have a successful restoration of vision.

Cloning of RNA1 Gene from Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 RNA1 유전자의 클로닝)

  • 송영환;고상석;이영석;강현삼
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.77-84
    • /
    • 1989
  • The temperature sensitive (ts) mutation on RNA1 gene of Saccharomyces cerevisiae prevents growth at restrictive temperature ($36^{\circ}C$) by accumulation of precursor tRNA, rRNA and mRNA (Hutchison et al., 1969; Shiokawa and Pogo, 1974; Hopper et al., 1978). RNA1 gene was cloned by complementation of the temperature sensitive growth defect of an rna1-1 mutant strain and identified by retransformation and concomitant loss of recombinant plasmid on non-selective condition. By deletion mapping, it was found that RNA1 gene resides within 3.5kb of BgII fragment.

  • PDF

Cloning and Expression of the dapD Gene from Brevibacterium lactofermentum in E. coli (Brevibacterium lactofermentum의 dapD 유전자의 Cloning 및 E. coli에서의 발현)

  • 김옥미;박선희;박혜경;이승언;하대중;이갑랑
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.5
    • /
    • pp.802-805
    • /
    • 2001
  • The dapD gene of Brevibacterium lactofermentum encoding tetrahydrodipicolinate N-succinyl transferase, one of the enzymes involved in lysine biosynthesis, was cloned by complementation of Escherichia coli dapD mutnat. The recombinant plasmid pLS1 was found to contain a 3.6 kb DNA fragment. Southern hybridization analysis confirmed that the cloned DNA fragment originated from B. lactofermentum. The data of L-lysine production showed that the B. lactofermentum dapD gene was expressed in E. coli.

  • PDF

Characterization of RbmD (Glycosyltransferase in Ribostamycin Gene Cluster) through Neomycin Production Reconstituted from the Engineered Streptomyces fradiae BS1

  • Nepal, Keshav Kumar;Oh, Tae-Jin;Subba, Bimala;Yoo, Jin Cheol;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.83-88
    • /
    • 2009
  • Amino acid homology analysis predicted that rbmD, a putative glycosyltransferase from Streptomyces ribosidificus ATCC 21294, has the highest homology with neoD in neomycin biosynthesis. S. fradiae BS1, in which the production of neomycin was abolished, was generated by disruption of the neoD gene in the neomycin producer S. fradiae. The restoration of neomycin by self complementation suggested that there was no polar effect in the mutant. In addition, S. fradiae BS6 was created with complementation by rbmD in S. fradiae BS1, and secondary metabolite analysis by ESI/MS, LC/MS and MS/MS showed the restoration of neomycin production in S. fradiae BS6. These gene inactivation and complementation studies suggested that, like neoD, rbmD functions as a 2-N-acetlyglucosaminyltransferase and demonstrated the potential for the generation of novel aminoglycoside antibiotics using glycosyltransferases in vivo.

A Novel Rapid Fungal Promoter Analysis System Using the Phosphopantetheinyl Transferase Gene, npgA, in Aspergillus nidulans

  • Song, Ha-Yeon;Choi, Dahye;Han, Dong-Min;Kim, Dae-Hyuk;Kim, Jung-Mi
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.429-439
    • /
    • 2018
  • To develop a convenient promoter analysis system for fungi, a null-pigment mutant (NPG) of Aspergillus nidulans was used with the 4'-phosphopantetheinyl transferase (PPTase) gene, npgA, which restores the normal pigmentation in A. nidulans, as a new reporter gene. The functional organization of serially deleted promoter regions of the A. nidulans trpC gene and the Cryphonectria parasitica crp gene in filamentous fungi was representatively investigated to establish a novel fungal promoter assay system that depends on color complementation of the NPG mutant with the PPTase npgA gene. Several promoter regions of the trpC and crp genes were fused to the npgA gene containing the 1,034-bp open reading frame and the 966-bp 3' downstream region from the TAA, and the constructed fusions were introduced into the NPG mutant in A. nidulans to evaluate color recovery due to the transcriptional activity of the sequence elements. Serial deletion of the trpC and crp promoter regions in this PPTase reporter assay system reaffirmed results in previous reports by using the fungal transformation step without a laborious verification process. This approach suggests a more rapid and convenient system than conventional analyses for fungal gene expression studies.

Targeted Gene Disruption and Functional Complementation of Cytochrome P450 Hydroyxlase Involved in Cyclosporin A Hydroxylation in Sebekia benihana

  • Lee, Mi-Jin;Han, Kyu-Boem;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • A cyclic undecapeptide-family natural product, cyclosporin A (CyA), which is one of the most valuable immunosuppressive drugs, is produced nonribosomally by a multifunctional cyclosporin synthetase enzyme complex in a filamentous fungal strain named Tolypocladium niveum. Previously, structural modifications of cyclosporins such as a regionspecific hydroxylation at the $4^{th}$ N-methyl leucine in a rare actinomycetes called Sebekia benihana were reported to lead to dramatic changes in their bioactive spectra. However, the reason behind this change could not be determined since a system to genetically manipulate S. benihana has not yet been developed. To address this limitation, in this study, we utilized the most commonly practiced gene manipulation techniques including conjugation-based foreign gene transfer-and-expression as well as targeted gene disruption to genetically manipulate S. benihana. Using these optimized genetic manipulation systems, a putative cytochrome P450 hydroxylase (CYP) gene named CYP506, which is involved in CyA hydroxylation in S. benihana, was specifically disrupted and genetically complemented. The S. benihana${\Delta}$CYP506 exhibited a significantly reduced CyA hydroxylation yield as well as considerable yield restoration by functional complementation of the S. benihana CYP506 gene, suggesting that the genetically manipulated S. benihana CYP mutant strains may serve as a more efficient bioconversion host for various valuable metabolites including CyA.

In Vivo Characterization of Phosphotransferase-Encoding Genes istP and forP as Interchangeable Launchers of the C3',4'-Dideoxygenation Biosynthetic Pathway of 1,4-Diaminocyclitol Antibiotics

  • Nguyen, Lan Huong;Lee, Na Joon;Hwang, Hyun Ha;Son, Hye Bin;Kim, Hye Ji;Seo, Eun Gyo;Nguyen, Huu Hoang;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.367-372
    • /
    • 2019
  • Deactivation of aminoglycosides by their modifying enzymes, including a number of aminoglycoside O-phosphotransferases, is the most ubiquitous resistance mechanism in aminoglycoside-resistant pathogens. Nonetheless, in a couple of biosynthetic pathways for gentamicins, fortimicins, and istamycins, phosphorylation of aminoglycosides seems to be a unique and initial step for the creation of a natural defensive structural feature such as a 3',4'-dideoxy scaffold. Our aim was to elucidate the biochemical details on the beginning of these C3',4'-dideoxygenation biosynthetic steps for aminoglycosides. The biosynthesis of istamycins must surely involve these 3',4'-didehydroxylation steps, but much less has been reported in terms of characterization of istamycin biosynthetic genes, especially about the phosphotransferase-encoding gene. In the disruption and complementation experiments pointing to a putative gene, istP, in the genome of wild-type Streptomyces tenjimariensis, the function of the istP gene was proved here to be a phosphotransferase. Next, an in-frame deletion of a known phosphotransferase-encoding gene forP from the genome of wild-type Micromonospora olivasterospora resulted in the appearance of a hitherto unidentified fortimicin shunt product, namely 3-O-methyl-FOR-KK1, whereas complementation of forP restored the natural fortimicin metabolite profiles. The bilateral complementation of an istP gene (or forP) in the ${\Delta}forP$ mutant (or ${\Delta}istP$ mutant strain) successfully restored the biosynthesis of 3',4'-dideoxy fortimicins and istamycins, thus clearly indicating that they are interchangeable launchers of the biosynthesis of 3',4'-dideoxy types of 1,4-diaminocyclitol antibiotics.

Construction of an Escherichia-Pseudomonas Shuttle Vector Containing an Aminoglycoside Phosphotransferase Gene and a lacZ' Gene for $\alpha$-Complementation

  • Lee, Bheong-Uk;Hong, Ja-Heon;Kahng, Hyung-Yeel;Oh, Kye-Heon
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.671-673
    • /
    • 2006
  • A new 4.87 kb Escherichia-Pseudomonas shuttle vector has been constructed by inserting a 1.27 kb DNA fragment with a replication origin of a Pseudomonas plasmid pRO1614 into the 3.6 kb E. coli plasmid pBGS18. This vector, designated pJH1, contains an aminogly-coside phosphotransferase gene (aph) from Tn903, a lacZ' gene for $\alpha$-complementation and a versatile multiple cloning site possessing unique restriction sites for EcoRI, SacI, KpnI, SmaI, BamHI, XbaI, SalI, BspMI, PstI, SphI, and HindIII. When pJH1 was transformed into E. coli DHS${\alpha}$ and into P. putida HK-6, it was episomally and stably maintained in both strains. In addition, the enhanced green fluorescent protein (EGFP) gene which was transcriptionally cloned into pJH1 rendered E. coli cells fluorescence when its transformants were illuminated at 488 nm.