• Title/Summary/Keyword: composite truss

Search Result 142, Processing Time 0.025 seconds

The Study on Ultimate Strength of Fully Embedded Composite Truss Beam (완전매입형 복합트러스 합성보의 내하력 평가)

  • Cheon, Seong-Bng;Won, Dae-Yon;Choi, Hong-Shik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.306-309
    • /
    • 2006
  • The fully embedded composite truss beam is developed based on composite member, truss system before composite and beam system after composite. The proper design concept and method of the fully embedded composite truss beam are discussed. A bending test on the fully embedded composite truss beam with span length 25.0m is carried out to investigate the flexural behavior and ultimate strength of the developed structure up to failure. A good agreement between the measured and predicted results are observed.

  • PDF

The Composite Action of Composite Truss Using H-Shaped Section Steel (H형강을 사용한 합성트러스의 합성효과)

  • Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.637-646
    • /
    • 2009
  • The composite actions of truss beams and floor slabs are not reflected on the design of the truss beam in domestic practice. In this research, basic experiments were conducted on a composite truss with the top and bottom chord members consisting of the H-shaped members. The tests were performed to evaluate the mechanical behaviors of the composite truss on the effects with the shear studs and without them. The specimens consisted of the steel truss and non-composite and composite trusses, and one-point-concentrated loading at the center and equivalent loading were monotonically applied. The composite effects were experimentally identified in the composite trusses using the shear stud connectors.

Experimental investigation on strength of CFRST composite truss girder

  • Yinping Ma;Yongjian Liu;Kun Wang
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.667-679
    • /
    • 2023
  • Concrete filled rectangular steel tubular (CFRST) composite truss girder is composed of the CFRST truss and concrete slab. The failure mechanism of the girder was different under bending and shear failure modes. The bending and shear strength of the girder were investigated experimentally. The influences of composite effect and shear to span ratio on failure modes of the girder was studied. Results indicated that the top chord and the joint of the truss were strengthened by the composited effect. The failure modes of the specimens were changed from the joint on top chord to the bottom chord. However, the composite effect had limited effect on the failure modes of the girder with small shear to span ratio. The concrete slab and top chord can be regarded as the composite top chord. In this case, the axial force distribution of the girder was close to the pin-jointed truss model. An approach of strength prediction was proposed which can take the composite effect and shear to span ratio into account. The approach gave accurate predictions on the strength of CFRST composite truss girder under different bending and shear failure modes.

Behavior and resistance of truss-type shear connector for composite steel-concrete beams

  • Lima, Jerfson M.;Bezerra, Luciano M.;Bonilla, Jorge;Silva, Ramon S.Y.R.C.;Barbosa, Wallison C.S.
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.569-586
    • /
    • 2020
  • The behavior of composite steel-concrete beams depends on the transmission of forces between two parts: the concrete slab and the steel I-beam. The shear connector is responsible for the interaction between these two parts. Recently, an alternative shear connector, called Truss Type connector, has been developed; it aligns efficient structural behavior, fast construction and implementation, and low cost when compared to conventional connectors applied in composite structures. However, there is still a lack of full understanding of the mechanical behavior of the Truss Type connector, due to its novelty. Thus, this study aims to analyze the influence of variation of geometric and physical parameters on the shear resistance of the Truss Type connector. In order to investigate those parameters, a non-linear finite element model, able to simulate push-out tests of Truss Type connectors, was specifically developed and validated with experimental results. A thorough parametric study, varying the height, the angle between rods, the diameter, and the concrete strength, was conducted to evaluate the shear resistance of the Truss Type connector. In addition, an equation to predict the resistance of the original Truss Type shear connector was proposed.

Analysis of concrete shrinkage along truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1237-1257
    • /
    • 2016
  • The paper concerns analysis of effects of shrinkage of slab concrete in a steel-concrete composite deck of a through truss bridge span. Attention is paid to the shrinkage alongside the span, i.e., transverse to steel-concrete composite cross-beams. So far this aspect has not been given much attention in spite of the fact that it affects not only steel-concrete decks of bridges but also steel-concrete floors of steel frame building structures. For the problem analysis a two-dimensional model is created. An analytical method is presented in detail. A set of linear equations is built to compute axial forces in members of truss girder flange and transverse shear forces in steel-concrete composite beams. Finally a case study is shown: test loading of twin railway truss bridge spans is described, verified FEM model of the spans is presented and computational results of FEM and the analytical method are compared. Conclusions concerning applicability of the presented analytical method to practical design are drawn. The presented analytical method provides satisfactory accuracy of results in comparison with the verified FEM model.

Evaluation of Structural Behaviour of a Composite CFT Truss Girder Bridge (CFT 트러스 거더 합성형교의 구조거동 평가)

  • Chung, Chul-Hun;Kim, Hye-Ji;Song, Na-Young;Ma, Hyang-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.149-159
    • /
    • 2010
  • This paper presents an experimental study on the structural behavior of composite CFT truss girder bridge with full depth precast panels. The length of span is 20,000 mm. The CFT truss girder is a tubular truss composed of chord members made of concrete-filled and hollow circular tubes. To determine fundamental structural characteristics such as the strength and deformation properties of composite CFT truss girder bridge, static and dynamic tests were conducted. The natural frequencies calculated by the FEM are in good agreement with experimental results obtained from dynamic test. Bracing have only a small effect on the natural frequencies of composite CFT truss girder bridge as indicated by the FEM results. The yield strength and deformation of the composite CFT truss girder bridges were investigated through a static bending test. Besides, the test results showed that uniform distribution of shear connectors can be applicable in composite CFT truss girder bridges.

Topology optimization of reinforced concrete structure using composite truss-like model

  • Yang, Zhiyi;Zhou, Kemin;Qiao, Shengfang
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.79-85
    • /
    • 2018
  • Topology optimization of steel and concrete composite based on truss-like material model is studied in this paper. First, the initial design domain is filled with concrete, and the steel is distributed in it. The problem of topology optimization is to minimize the volume of steel material and solved by full stress method. Then the optimized steel and concrete composite truss-like continuum is obtained. Finally, the distribution of steel material is determined based on the optimized truss-like continuum. Several numerical results indicate the numerical instability and rough boundary are settled. And more details of manufacture and construction can be presented based on the truss-like material model. Hence, the truss-like material model of steel and concrete is efficient to establish the distribution of steel material in concrete.

Bending Behavior of Truss Reinforced by Fiber-Reinforced Beam (섬유보강 복합재료로 보강한 트러스의 휨거동)

  • Park, Se-Eon;Lee, Bang Yeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.325-326
    • /
    • 2023
  • This paper presents an experimental study on the bending behavior of Kagome truss composite beams reinforced by fiber-reinforced composites (FRC). Two types of FRCs, i.e., high ductile FRC with a high tensile ductility and high strength FRC with high compressive strength were used; and three Kagome truss composite beams reinforced by FRCs were manufactured. In order to investigate the bending behavior of beams, bending tests were carried out. Test results showed that types of FRCs and reinforcement methods significantly influenced the bending behavior of Kagome truss composite beams.

  • PDF

Impact resistant properties of Kagome truss reinforced composite panels

  • Choi, Jeong-Il;Park, Se-Eon;Lee, Sang-Kyu;Kim, Gyu-Yong;Hwang, Jae-Seung;Lee, Bang Yeon
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.391-398
    • /
    • 2021
  • This paper presents an experimental study exploring impact resistant properties of Kagome truss reinforced composite panels. Three types of panels with different materials and reinforcements, i.e., ultra-high-performance mortar, steel fiber, and Kagome truss, were designed and manufactured. High-velocity projectile impact tests were performed to investigate the impact response of panels with dimensions of 200 mm×200 mm×40 mm. The projectile used in the testing was a steel slug with a hemispherical front; the impact energy was 1 557 J. Test results showed that the Kagome truss reinforcement was effective at improving the impact resistance of panels in terms of failure patterns, damaged area, and mass loss. Synergy effects of a combination of Kagome truss and fiber reinforcements for the improvement of impact resistance capacity of ultra-high-performance mortar were also observed.

Vibration performance of composite steel-bar truss slab with steel girder

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.577-589
    • /
    • 2019
  • In this study, on-site testing was carried out to investigate the vibration performance of a composite steel-bar truss slab with steel girder system. Ambient vibration was performed to capture the primary vibration parameters (natural frequencies, damping ratios, and mode shapes). The composite floor possesses low frequency (< 10 Hz) and damping (< 2%). Based on experimental, theoretical, and numerical analyses on natural frequencies and mode shapes, the boundary condition of SCSC (i.e., two opposite edges simply-supported and the other two edges clamped) is deemed more reasonable for the composite floor. Walking excitations by one person (single excitation), two persons (dual excitation), and three persons (triple excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor ${\beta}_{rp}$ describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking excitations is proposed. The comparisons of the modal parameters determined by ambient vibration and walking tests reveal the interaction effect between the human excitation and the composite floor.