• 제목/요약/키워드: compressive strength

검색결과 7,738건 처리시간 0.029초

Long-term development of compressive strength and elastic modulus of concrete

  • Yang, Shuzhen;Liu, Baodong;Yang, Mingzhe;Li, Yuzhong
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.263-271
    • /
    • 2018
  • Compressive strength and elastic modulus of concrete are constantly changing with age. In order to determine long-term development of compressive strength and elastic modulus of concrete, an investigation of C30 concrete cured in air conditions was carried out. Changes of compressive strength and elastic modulus up to 975 days were given. The results indicated that compressive strength and elastic modulus of concrete rapidly increased with age during the initial 150 days and then increased slowly. The gain in elastic modulus was slower than that of compressive strength. Then relationships of time-compressive strength, time-elastic modulus and compressive strength-elastic modulus were proposed by regression analysis and compared with other investigations. The trends of time-compressive strength and time-elastic modulus with age agreed best with ACI 209R-92. Finally, factors contributed to long-term development of compressive strength and elastic modulus of concrete were proposed and briefly analyzed.

폴리머 콘크리트의 압축 및 휨강도 발현 특성 (Compressive and Flexural Strength Development Characteristics of Polymer Concrete)

  • 김남길;연규석
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.101-110
    • /
    • 2018
  • This study experimentally investigated the compressive and flexyral strength development characteristics of polymer concrete using four different type polymeric resins such as unsaturated polyester, vinyl ester, epoxy, and PMMA (polymethyl methacrylate) as binders. The test results show that the average compressive strength of those four different polymer concretes was 88.70 MPa, the average flexural strength was 20.30 MPa. Those test results show that compressive and flexural strengths of polymer concrete were much stronger than compressive and flexural strengths of ordinary Portland cement concrete. In addition, the relative gains of the compressive strength development at the age of 24 hrs compared to the age of 168 hrs were 68.6~88.3 %. Also, the relative gains of the flexural strength development at the age of 24 hrs compared to the age of 168 hrs were 73.8~93.4 %. These test results show that compressive and flexural strengths of each polymer concrete tested in this study were developed at the early age. Moreover, the prediction equations of compressive and flexural strength developments regarding the age were determined. The determined prediction equations could be applied to forecast the compressive and flexural strength developments of polymer concrete investigated in this study because those prediction equations have the high coefficients of correlation. Last, the relations between the compressive strength and the flexural strength of polymer concrete were determined and the flexural/compressive strength ratios were from 1/4 to 1/5. These results show that polymer concretes investigated in this study were appropriate as a flexural member of a concrete structure because the flexural/compressive strength ratios of polymer concrete were much higher than the flexural/compressive strength ratios of Portland cement concrete.

압축강도 측정방법에 따른 80MPa급 UHPC의 품질관리에 관한 연구 (A Study on the Quality Control of 80MPa UHPC according to the Measurement Method of Compressive Strength)

  • 구현철;문지훈;이학주;박민상;최성
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.176-177
    • /
    • 2019
  • Recently, efforts are made to apply 200MPa levels of ultra-high strength concrete to structures exceeding 40MPa.. Ultra-high strength concrete has been steadily researched in Korea as well as abroad, and now it is equipped with 200MPa ultra-high strength concrete mixing technology. Because ultra-high strength concrete has a higher range of compressive strength than ordinary concrete, it is difficult to accurately measure the compressive strength of UHPC concrete with existing compressive strength measuring equipment and can be less reliable. In this study, the compressive strength of the SC80 was measured according to the test method to compare the compressive strength of the SC80 by applying various methods of measurement of compressive strength. The compressive strength test method measured the compressive strength according to the size of the specimen, the grinding method, and the capacity of the UTM equipment.

  • PDF

용접 구조물 압축강도의 간이해석에 관한 연구 (A Study on the Simplified Method to Calculate the Compressive Strength of Welded Structures)

  • 서승일
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.87-95
    • /
    • 2000
  • Residual stresses and deformations due to welding have effects on the strength of structures. In this paper, the compressive strength of basic welded structures is studied and the effects of the residual stresses and deformations on the compressive strength of beams, plates and shells are investigated,. Theoretical analysis for the basic structures is carried out and simplified methods to calculate the compressive strength are proposed. The proposed methods yield simple formulas to calculate the compressive strength, of which results are much helpful. The accuracy of the proposed method is revealed by comparison with experimental results.

  • PDF

안정처리토의 강도특성에 관한 실험적 연구 (An Experimental Study on The Compressive Strength of Soil Stabilized with Quick Lime and Briquette ash)

  • 김재영;최혁재;유병옥;안성율;박승해
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.381-386
    • /
    • 2005
  • In order to have compressive strength tests and frost heaving tests, two sorts of soil samples at Chonbuk-Do area were used. According to this research, the compressive strength of soil which was mixed by quick lime, was largely increased until 28 days but after 28 days, the increment of strength was seldom found and its maximum compressive strength increasing rate for content of quick lime was $10{\sim}15%$ scope. In the mixed rates of quick lime and briquette ash, the compressive strength of soil which was mixed by quick lime and briquette ash, was increased by increasing mixed rates of quick lime and its compressive strength was increased by additional quantity. The compressive strength of mixed soil within freezing-thawing 1 cycle was diminished around 30% compared to non-freezing soil's 28 days compressive strength but there were no movements after 2 cycle.

  • PDF

양생 조건이 바닥용 건조 모르타르의 압축강도에 미치는 영향 (Effect of Curing Conditions on Compressive Strength of Dry Mortar for Floor)

  • 정용;김두혁;박창환;조성현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.377-378
    • /
    • 2023
  • This study examined the effect of curing conditions on the compressive strength of dry mortar for floor. The compressive strength according to the relative humidity during curing was compared, and the influence of expansive additives on compressive strength under water curing was reviewed. As a result, low relative humidity conditions during curing was not effective in improving the compressive strength of dry mortar for floor, and it was judged that the continuous hydration reaction insufficient due to lack of the moisture supply. In order to improve compressive strength, high relative humidity maintenance was found to be an important factor. However, under water curing conditions, the compressive strength has decreased as a result of continuous volume expansion due to the use of the expansive additives.

  • PDF

Neuro-fuzzy based approach for estimation of concrete compressive strength

  • Xue, Xinhua;Zhou, Hongwei
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.697-703
    • /
    • 2018
  • Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, it is necessary to predict the concrete strength based upon the early strength data. However, concrete compressive strength is affected by many factors, such as quality of raw materials, water cement ratio, ratio of fine aggregate to coarse aggregate, age of concrete, compaction of concrete, temperature, relative humidity and curing of concrete. The concrete compressive strength is a quite nonlinear function that changes depend on the materials used in the concrete and the time. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of concrete compressive strength. The training of fuzzy system was performed by a hybrid method of gradient descent method and least squares algorithm, and the subtractive clustering algorithm (SCA) was utilized for optimizing the number of fuzzy rules. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed ANFIS model. Further, predictions from three models (the back propagation neural network model, the statistics model, and the ANFIS model) were compared with the experimental data. The results show that the proposed ANFIS model is a feasible, efficient, and accurate tool for predicting the concrete compressive strength.

개방셀 세라믹스의 압축강도에 대한 제조공정변수 및 미세구조의 영향 (Effects of Fabrication Variables and Microstructures on the Compressive Strength of Open Cell Ceramics)

  • 정한남;현상훈
    • 한국세라믹학회지
    • /
    • 제36권9호
    • /
    • pp.954-964
    • /
    • 1999
  • The effect of fabrication variables and microstructures on the compressive strength of open cell alumina zirconia and silicon nitride ceramics fabricated by polymeric sponge method was investigated. Bulk density and compressive strength of open cell ceramics were mainly affected by coating characteristics of ceramic slurry on polymeric sponge that controlled a shape thickness and defect of the struts. Sintering temperature was optimized for enhancement of strut strength and compressive strength of open cell ceramics. Relative density and compressive strength behaviors were relatively well matched with the predicted values. Open cell ceramics of lower relative density below 0.1 prepared by first relatively well matched with the predicted values. Open cell ceramics of lower relative density below 0.1 prepared by first coating of ceramic slurry had thin triangular prismatic struts that were often broken or longitudinally cracked. With an application of second coating of slurry shape of struts was transformed into thickner cylindrical one and defects in struts were healed but the relative density increased over 0.2 Open cell zirconia had both the highest bulk density and compressive strength and alumina had the lowest compressive strength while silicon nitrides showed relatively high compressive strength and the lowest density. Based upon the analysis open cell silicon nitride was expected to be one of potential structural ceramics with light weight.

  • PDF

Failure characteristics of columns intersected by slabs with different compressive strengths

  • Choi, Seung-Ho;Hwang, Jin-Ha;Han, Sun-Jin;Kang, Hyun;Lee, Jae-Yeon;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.435-443
    • /
    • 2020
  • The objective of this study was to determine the effective compressive strength of a column-slab connection with different compressive strengths between the column and slab concrete. A total of eight column specimens were fabricated, among which four specimens were restrained by slabs while the others did not have any slab, and the test results were compared with current design codes. According to ACI 318, the compressive strength of a column can be used as the effective compressive strength of the column-slab connection in design when the strength ratio of column concrete to slab concrete is less than 1.4. Even in this case, however, this study showed that the effective compressive strength decreased. The specimen with its slab-column connection zone reinforced by steel fibers showed an increased effective compressive strength compared to that of the specimen without the reinforcement, and the interior column specimens restrained with slabs reached the compressive strength of the column.

고온 수열 콘크리트의 압축강도와 이축휨강도의 상관성 검토 (Correlations between Compressive Strength and Biaxial Flexural Strength on High-Heated Concrete)

  • 이건철;권현우;김영민;허영선
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.239-240
    • /
    • 2021
  • In this study, we conducted a study to evaluate the more accurate mechanical properties of concrete damaged by fire. In relation to this, in this study, the results of compressive strength and biaxial flexural strength were compared for concrete that received high temperature heat. As a result, both the compressive strength and the biaxial bending strength decreased as the heating temperature increased. As a result of examining the correlation between the compressive strength and the biaxial flexural strength, the biaxial flexural strength was smaller than the compressive strength.

  • PDF