• Title/Summary/Keyword: concrete modelling

Search Result 340, Processing Time 0.026 seconds

Modelling seismically repaired and retrofitted reinforced concrete shear walls

  • Cortes-Puentes, W. Leonardo;Palermo, Dan
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.541-561
    • /
    • 2011
  • The Finite Element Method (FEM) was employed to demonstrate that accurate simulations of seismically repaired and retrofitted reinforced concrete shear walls can be achieved provided a good analysis program with comprehensive models for material and structural behaviour is used. Furthermore, the analysis tool should have the capability to retain residual damage experienced by the original structure and carry it forward in the repaired and retrofitted structure. The focus herein is to provide quick, simple, but reliable modelling procedures for repair and retrofitting strategies such as concrete replacement, addition of diagonal reinforcing bars, bolting of external steel plates, and bonding of external steel plates and fibre reinforced polymer sheets, thus illustrating versatility in the modelling. Slender, squat, and slender-squat shear walls were investigated. The modelling utilized simple rectangular membrane elements for the concrete, truss bar elements for the steel and FRP retrofitting materials, and bond-link elements for the bonding interface between steel or FRP to concrete. The analyses satisfactorily simulated seismic behaviour, including lateral load capacity, displacement capacity, energy dissipation, hysteretic response, and failure mode.

Finite element modelling of GFRP reinforced concrete beams

  • Stoner, Joseph G.;Polak, Maria Anna
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.369-382
    • /
    • 2020
  • This paper presents a discussion of the Finite Element Analysis (FEA) when applied for the analysis of concrete elements reinforced with glass fibre reinforced polymer (GFRP) bars. The purpose of such nonlinear FEA model development is to create a tool that can be used for numerical parametric studies which can be used to extend the existing (and limited) experiment database. The presented research focuses on the numerical analyses of concrete beams reinforced with GFRP longitudinal and shear reinforcements. FEA of concrete members reinforced with linear elastic brittle reinforcements (like GFRP) presents unique challenges when compared to the analysis of members reinforced with plastic (steel) reinforcements, which are discussed in the paper. Specifically, the behaviour and failure of GFRP reinforced members are strongly influenced by the compressive response of concrete and thus modelling of concrete behaviour is essential for proper analysis. FEA was performed using the commercial software ABAQUS. A damaged-plasticity model was utilized to simulate the concrete behaviour. The influence of tension, compression, dilatancy, mesh, and reinforcement modelling was studied to replicate experimental test data of beams previously tested at the University of Waterloo, Canada. Recommendations for the finite element modelling of beams reinforced with GFRP longitudinal and shear reinforcements are offered. The knowledge gained from this research allows for the development of a rational methodology for modelling GFRP reinforced concrete beams, which subsequently can be used for extensive parametric studies and the formation of informed recommendations to design standards.

Finite element modelling of reinforced concrete structures with laboratory verification

  • Cheng, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.593-609
    • /
    • 1995
  • The presence of reinforcement has a significant influence on the stress-strain behaviour of reinforced concrete structures, expecially when the failure stage of the structures is approached. In the present paper, the constrained and non-constrained zones of concrete due to the presence of reinforcement is developed and the stress-stress-strain behaviour of concrete is enhanced by a reinforcement confinement coefficient, Furthermore, a flexible method for the modelling of reinforcement with arbitrary orientation and not passing the nodes of concrete element is also proposed. Numerical examples and laboratory tests have shown that the coefficient and the modelling technique proposed by the author are satisfactory.

Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization

  • Li, Ning;Asteris, Panagiotis G.;Tran, Trung-Tin;Pradhan, Biswajeet;Nguyen, Hoang
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.733-745
    • /
    • 2022
  • This study proposed a robust artificial intelligence (AI) model based on the social behaviour of the imperialist competitive algorithm (ICA) and artificial neural network (ANN) for modelling the deflection of reinforced concrete beams, abbreviated as ICA-ANN model. Accordingly, the ICA was used to adjust and optimize the parameters of an ANN model (i.e., weights and biases) aiming to improve the accuracy of the ANN model in modelling the deflection reinforced concrete beams. A total of 120 experimental datasets of reinforced concrete beams were employed for this aim. Therein, applied load, tensile reinforcement strength and the reinforcement percentage were used to simulate the deflection of reinforced concrete beams. Besides, five other AI models, such as ANN, SVM (support vector machine), GLMNET (lasso and elastic-net regularized generalized linear models), CART (classification and regression tree) and KNN (k-nearest neighbours), were also used for the comprehensive assessment of the proposed model (i.e., ICA-ANN). The comparison of the derived results with the experimental findings demonstrates that among the developed models the ICA-ANN model is that can approximate the reinforced concrete beams deflection in a more reliable and robust manner.

A parametric study of the meso-scale modelling of concrete subjected to cyclic compression

  • Rempling, Rasmus;Grassl, Peter
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.359-373
    • /
    • 2008
  • The present parametric study deals with the meso-scale modelling of concrete subjected to cyclic compression, which exhibits hysteresis loops during unloading and reloading. Concrete is idealised as a two-dimensional three-phase composite made of aggregates, mortar and interfacial transition zones (ITZs). The meso-scale modelling approach relies on the hypothesis that the hysteresis loops are caused by localised permanent displacements, which result in nonlinear fracture processes during unloading and reloading. A parametric study is carried out to investigate how aggregate density and size, amount of permanent displacements in the ITZ and the mortar, and the ITZ strength influence the hysteresis loops obtained with the meso-scale modelling approach.

Modeling shear behavior of reinforced concrete beams strengthened with externally bonded CFRP sheets

  • Khan, Umais;Al-Osta, Mohammed A.;Ibrahim, A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.125-142
    • /
    • 2017
  • Extensive research work has been performed on shear strengthening of reinforced concrete (RC) beams retrofitted with externally bonded carbon fiber reinforced polymer (CFRP) in form of strips. However, most of this research work is experimental and very scarce studies are available on numerical modelling of such beams due to truly challenging nature of modelling concrete shear cracking and interfacial interaction between components of such beams. This paper presents an appropriate model for RC beam and to simulate its cracking without numerical computational difficulties, convergence and solution degradation problems. Modelling of steel and CFRP and their interfacial interaction with concrete are discussed. Finally, commercially available non-linear finite element software ABAQUS is used to validate the developed finite element model with key tests performed on full scale T-beams with and without CFRP retrofitting, taken from previous extensive research work. The modelling parameters for bonding behavior of CFRP with special anchors are also proposed. The results presented in this research work illustrate that appropriate modelling of bond behavior of all the three types of interfaces is important in order to correctly simulate the shear behavior of RC beams strengthened with CFRP.

Modelling of concrete structures subjected to shock and blast loading: An overview and some recent studies

  • Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.235-249
    • /
    • 2009
  • The response of concrete structures subjected to shock and blast load involves a rapid transient phase, during which material breach may take place. Such an effect could play a crucial role in determining the residual state of the structure and the possible dispersion of the fragments. Modelling of the transient phase response poses various challenges due to the complexities arising from the dynamic behaviour of the materials and the numerical difficulties associated with the evolving material discontinuity and large deformations. Typical modelling approaches include the traditional finite element method in conjunction with an element removal scheme, various meshfree methods such as the SPH, and the mesoscale model. This paper is intended to provide an overview of several alternative approaches and discuss their respective applicability. Representative concrete material models for high pressure and high rate applications are also commented. Several recent application studies are introduced to illustrate the pros and cons of different modelling options.

Energy equivalent lumped damage model for reinforced concrete structures

  • Neto, Renerio Pereira;Teles, Daniel V.C.;Vieira, Camila S.;Amorim, David L.N.F.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.285-293
    • /
    • 2022
  • Lumped damage mechanics (LDM) is a recent nonlinear theory with several applications to civil engineering structures, such as reinforced concrete and steel buildings. LDM apply key concepts of classic fracture and damage mechanics on plastic hinges. Therefore, the lumped damage models are quite successful in reproduce actual structural behaviour using concepts well-known by engineers in practice, such as ultimate moment and first cracking moment of reinforced concrete elements. So far, lumped damage models are based in the strain energy equivalence hypothesis, which is one of the fictitious states where the intact material behaviour depends on a damage variable. However, there are other possibilities, such as the energy equivalence hypothesis. Such possibilities should be explored, in order to pursue unique advantages as well as extend the LDM framework. Therewith, a lumped damage model based on the energy equivalence hypothesis is proposed in this paper. The proposed model was idealised for reinforced concrete structures, where a damage variable accounts for concrete cracking and the plastic rotation represents reinforcement yielding. The obtained results show that the proposed model is quite accurate compared to experimental responses.

A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Aggregate Ratio of Concrete (잔골재율 변화에 따른 콘크리트 건조수축 모델링에 관한 연구)

  • Park, Do-kyong;Yoon, Yer-Wan;Kim, Kwang-Seo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.71-77
    • /
    • 2004
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidity. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. Strain Rate of Drying Shrinkage of concrete under the condition of dry air appears to rise by about 20%-30% in proportion as the temperature rises $5^{\circ}C$ when the humidity was held below 10% compared under the condition of dry temperature & Humidity test chamber. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. A general formula with two variables is derived as follow ${\varepsilon}={\alpha}_1+{\beta}_1x_1+{\beta}_2x_2+{\beta}_3x_1^2+{\beta}_5x_2^2$. and also graphed in 3 dimensions, enabling to apply to actual design and predict Strain Rate of Drying Shrinkage in concrete. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as follows. The coefficient of correlation of Drying Shrinkage in Concrete was over 90%.

A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Properties of Aggregate (잔골재 특성에 따른 콘크리트 건조수축 모델링에 관한 연구)

  • Park Do-Kyong;Yang Keek-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.1 s.19
    • /
    • pp.73-77
    • /
    • 2006
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidify. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. As a result Strain Rate of Drying Shrinkage of concrete was measured to increase by average $10{\times}10^{-5}$ in proportion to additional 4% increase in fine aggregate ratio, when water/cement ratio constant. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. 6. Strain Rate of Drying Shrinkage in sea sand concrete increased $10%{\sim}15%$ higher than measured when in river sand. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as fellows. The coefficient of correlation of Drying Shrinkage in concrete was over 90%.