• Title/Summary/Keyword: construction joint

Search Result 1,104, Processing Time 0.025 seconds

Evaluation of Buckling Load and Specified Compression Strength of Welded Built-up H-section Compression Members with Residual Stresses (잔류응력의 영향을 고려한 조립 H-형강 부재의 좌굴하중 및 설계압축강도 평가)

  • Lee, Soo-Keuon;Yang, Jae-Guen;Kang, Ji-Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • Residual stress is defined as stress that already exists on a structural member from the effects of welding and plastic deformation before the application of loading. Due to such residual stress, welded H-section compression members under centroidal compression load can undergo buckling and failure for strength values smaller than the predicted buckling load and specified compressive strength. Therefore, this study was carried out to evaluate the effect of residual stress from welding on the determination of the buckling load and specified compressive strength of the H-section compression member according to the column length variation. A three-dimensional nonlinear finite element analysis was performed for the H-section compression member where the welded joint was fillet welded by applying heat inputs of 3.1kJ/mm and 3.6kJ/mm using the SAW welding method.

Analytical Study on Behavior Characteristic of Shear Friction on Reinforced Concrete Shear Wall-Foundation Interface using High-Strength Reinforcing Bar (고강도 전단철근을 사용한 철근콘크리트 전단벽체-기초계면에서의 전단마찰 거동특성에 대한 해석적 연구)

  • Cheon, Ju-Hyun;Lee, Ki-Ho;Baek, Jang-Woon;Park, Hong-Gun;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.473-480
    • /
    • 2016
  • The purpose of this study is to provide analytical method to reasonably evaluate the complicated failure behaviors of shear friction of reinforced concrete shear wall specimens using grade 500 MPa high-strength bars. A total of 16 test specimens with a variety of variables such as aspect ratio, friction coefficient of interface in construction joint, reinforcement details, reinforcement ratio in each direction, material properties were selected and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the modified shear friction constitutive equation in interface based on the concrete design code (KCI, 2012) and CEB-FIP Model code 2010. The mean and coefficient of variation for maximum load from the experiment and analysis results was predicted 1.04 and 17% respectively and properly evaluated failure mode and overall behavior characteristic until failure occur. Based on the results, the analysis program that was applied modified shear friction constitutive equation is judged as having a relatively high reliability for the analysis results.

Development of Precast Hollow Concrete Columns with Non-Shrink Mortar Grouting Type Splice Sleeve (무수축 모르타르 충진형 슬리브를 사용한 중공 프리캐스트 교각 개발)

  • Cho, Jae-Young;Lee, Young-Ho;Kim, Do-Hak;Park, Jong-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.215-225
    • /
    • 2011
  • In general, the precast columns can obtain its homogeneous quality as they are produced in a factory with a hollow concrete block type by using high strength concrete, so that they can generate the reduction of dead load. Such a method of precast hollow concrete columns is already implemented in USA and Japan and used for connecting between blocks which use PC tendons. However, it is inevitable to have uneconomical construction with excessive cost in early stage when PC tendons are used. This study aims to develop an economical precast column with high quality and constructability which consists of only splice sleeve and general reinforcing bar without using PC tendons in order to reduce the construction period and cost. To achieve this goal, this study tested the performance of total 5 minimized models in the experiment with the variables such as hollowness, diameter of main reinforcement bar and cross-sectional size for the cross section of precast column by using grouting type splice sleeve which is a new type joint rebar. And it also verified the performance of column in the experiment for a large-sized model in order to overview its applicability by excluding large scale effect.

Semi-rigid Elasto-Plastic Post Buckling Analysis of Space Frame by Using the Explicit Arc-Length Method (명시적 호장법을 이용한 공간프레임의 반강접 탄소성 후좌굴 해석)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.535-546
    • /
    • 2011
  • In this paper, semi-rigid elasto-plastic post-buckling analysis of a space frame was performed using various explicit arc-length methods. Various explicit arc-length methodsand a large-deformation and small-strain elasto-plastic 3D space frame element with semi-rigid connections and plastic hinges were developed. This element can be appliedto both explicit and implicit numerical algorithms. In this study, the Dynamic Relaxation method was adopted in the predictor and corrector processesto formulate an explicit arc-length algorithm. The developed "explicit-predictor" or "explicit-corrector" were used in the elasto-plastic post-buckling analysis. The Eulerian equations for a beam-column with finite rotation, which considers the bowing effects, were adopted for the elastic system and extended to theinelastic system with a plastic hinge concept. The derived tangent stiffness matrix was asymmetrical due to the finite rotation. The joint connection elements were introduced for semi-rigidity using a static condensation technique. Semi-rigid elasto-plastic post-buckling analyses were carried out to demonstrate the potential of the developed explicit arc-length method and advanced space frame element in terms of accuracy and efficiency.

An Availability Analysis on the Gap K-Joints using High Strength Circular Hollow Section Members (고강도 원형강관 갭K형 접합의 사용성 해석)

  • Ahn, Kwan-Su;Choi, Byong-Jeong;Oh, Young-Suk;Kim, Jae-Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.109-119
    • /
    • 2010
  • There are many restrictions in the application of high-strength HSSs, including yield strength and yield ratio for the 600-MPa steel. The AISC and Canadian codes recommend that the yield strength and yield ratio of HSS members be 360 MPa and 80%, respectively. It is important to understand the true buckling behaviors of HSSs using high-strength steel at the limit states. There are many experimental data regarding the rectangular HSSs, and the circular ones are not enough for high-strength steel. Therefore, this study was conducted to create a better understanding of the buckling behaviors of the 600- and 400-MPa steels based on the results of the finite-element analysis that was done before the experiment. To understand the structural behaviors of the aforementioned steels, the width-to-thickness ratios, the angle of the web members, the yield strength, and the gap of the web members were selected as the main parameters in this study, and ABAQUS, a general finite-element program, was used.As a result, the compression web member reached elastic buckling in the 600-MPa steel and inelastic buckling in the 400-MPa steel. A brittle fracture occurred in the case where the yield ratio was greater than 80%. At the same time, it was found that the limit strength determined via FEM analysis had a higher value compared to the code evaluation with the variation of the width-to-thickness ratio in the main code member. The change in the connection load in high-strength steels was not identified by the other factors.

A Case Study on the Slope Collapse and Reinforcement Method of the Phyllite Slope (천매암 지역에서의 비탈면 붕괴 원인규명 및 보강대책 사례연구)

  • Cho, Younghun;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.83-93
    • /
    • 2010
  • The purpose of this study is to present emergency rehabilitation, cause and the countermeasure of reinforcement about reinforced retaining wall and the slope collapse of the phyllite ground. The study area is broken easily because this area has rock mass discontinuity such as stratification, foliation, joint and fold. And this area consists of the ground where it happens easily to the failure of structure like reinforced retaining wall because of the phyllite ground sensitive to weathering. Counterweight fill in front of reinforced retaining wall was performed as emergency rehabilitation about displacement of reinforced retaining wall and the failure at the rear of slope on phyllite ground. After that, additional displacement didn't occur. Boring and geophysical exploration were launched to present emergency rehabilitation and develop the long-term method of reinforcement. This could grasp anticipated range of the failure section and identify internal and external factors of the cause of the slope collapse. Several methods of reinforcement were suggested by conducting the numerical analysis. When conducting design and construction of major structures at the ground which has complex discontinuities, the precise site investigation should be conducted. During construction, immediate action for over-displacement should be taken by performing the periodic measurement.

Comparison of Empirical Model for Penetration Rate Prediction using Case History of TBM Construction (TBM의 관입속도 예측을 위한 경험적 모델의 비교)

  • Han, Jung-Geun;Kim, Jong-Sul;Lee, Yang-Kyu;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.61-70
    • /
    • 2011
  • This paper describes prediction results of penetration rate using case history in order to compare empirical models for penetration rate prediction of TBM. The reasonable empirical model is evaluated by comparison with prediction results and measured result. The penetration rate prediction is applied in separate empirical models considering rock characteristics and mechanical characteristics of TBM. The rock of applied filed had almost gneiss and its unconfined compressive strength was irregular due to the exist of weak zones and joint. In prediction results using unconfined compressive strength, Graham's model (1976) had impractical result when it had lower strength. NTNU model (1998) of the separate empirical models used in average penetration rate had the highest accuracy by comparison with the others, because it is a reasonable model which has rock characteristics and mechanical characteristics of TBM. However, Tarkoy's model (1986) based on unconfined compressive strength correspond with the measured values in field. Therefore, it should be considered a rock type, geological characteristic and mechanical characteristic of TBM at prediction of penetration rate.

An Experimental Study on the Flexural Behavior for T-joints with Square Hollow Structural Sections (각형강관 T형 접합부의 휨거동에 관한 실험 연구)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Young Hwan;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.211-219
    • /
    • 2009
  • The purpose of the study described in this paper was to experimentally investigate branch squared T joints with cold formed hollow structural sections under the in plane moment in a Vierendeel Truss. The branch in the T joints was welded to the upper flange of the chord. The main experimental parameters were the ratio of the width to the thickness of the chord ($2{\gamma}$), with ${16.7{\leq}2{\gamma}{\leq}33.3}$, and the width ratio of the branch to the chord ($\beta$), with ${0.40{\leq}{\beta}{\leq}0.71}$. Nine specimens were tested and manufactured in joints under the in plane bending moment. Based on the results of the test, the in plane moment strength of the branch squared T joints was determined according to the bending deformation of the chord flange yielding, regardless of the ratio of the width to the thickness of the chord and the ratio of the width of the branch to the width of the chord. Also, the in plane moment strength of the branch squared T joints in the hollow structural sections can be defined as 1.5 times the moment load at M1%B the strength of the joints that governed the serviceability in the control group. Finally, the experimental results with the branch squared T joints show that the in lane moment strength of the joint increased as $2{\gamma}$ decreased and $\beta$ increased.

Development of Extraction Method of Slab Curling Shape of jointed Concrete Pavement Using Profile Data (줄눈 콘크리트포장의 프로파일 데이터를 이용한 슬래브의 컬링형상 추출기법 개발)

  • Chon, Beom-Jun;Lee, Seung-Woo;Mun, Sung-Ho
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.9-18
    • /
    • 2008
  • Curling is caused by the difference in the temperature and humidity by the depth of the slab in Jointed Plain Concrete Pavement. Slab curvature shape and size change due to curling exert a profound influence on the internal stress and roughness of the pavement, affecting structural and functional performance of the pavement. Direct measurement of the slab curvature entails many problems. Many measuring instruments have to be installed at the early-stage of the pavement construction, and the behavior of the slab curvature needs to be measured accurately from the early-stage. Moreover, the cost and technical difficulty are very formidable to measure the slab curvature. This study develops a measurement method for slab curvature in jointed concrete pavement at any given time by applying Power Spectrum Density Analysis and Inverse Fast Fourier Transformation to the profile data, that can be easily obtained at the construction field site. The effectiveness of this developed method is verified by measuring the profile data of the test road of jointed concrete pavement at an inland central expressway by the hour and by examining the result of extracting the slab curvature shape from this profile data. Additionally, the profile data of CRCP(Continuously Reinforced Concrete Pavement) sections on the same expressway were obtained and analyzed at the same time. The validity of the method developed for the slab curvature shape extraction is verified by comparing the result from the analysis of the profile data of CRCP sections with that from the analysis of the prof1Ie data of jointed concrete pavement sections.

  • PDF

Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars (세장비 및 대각철근 유무에 따른 고강도 철근보강 콘크리트 연결보의 전단성능)

  • Kim, Sun-Woo;Jang, Seok-Joon;Yun, Hyun-Do;Seo, Soo-Yeon;Chun, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • As per current seismic design codes, diagonally reinforced coupling beams are restricted to coupling beams having aspect ratio below 4. However, a grouped diagonally reinforcement detail makes distribution of steel bars in the beam much harder, furthermore it may result in poor construction quality. This paper describes the experimental results of concrete coupling beam reinforced with high-strength steel bars (SD500 & SD600 grades). In order to improve workability for fabricating coupling beams, a headed large diameter steel bar was used in this study. Two full-scale coupling beams were fabricated and tested with variables of reinforcement details and aspect ratio. To reflect real behavior characteristic of the beam coupling shear walls, a rigid steel frame system with linked joints was set on the reaction floor. As a test result, it was noted that cracking and yielding of reinforcement were initially progressed at the coupling beam-to-shear wall joint, and were progressed to the mid-span of the coupling beam, based on the steel strain and failure modes. It was found that the coupling beams have sufficient deformation capacity for drift ratio of shear wall corresponding to the design displacement in FEMA 450-1. In this study, the headed horizontal steel bar was also efficient for coupling beams to exhibit shear performance required by seismic design codes. For detailed design for coupling beam reinforced with high-strength steel, however, research about the effect of variable aspect ratios on the structural behavior of coupling beam is suggested.