• Title/Summary/Keyword: contact AFM

Search Result 258, Processing Time 0.031 seconds

Non-contact type AFM using frequency separation scheme (주파수응답 분리방법을 이용한 비접촉식 AFM)

  • 이성규;염우섭;박기환;송기봉;김준호;김은경;박강호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.375-378
    • /
    • 2002
  • In this paper, the frequency response separation scheme is proposed for high scanning speed and simple structure of non-contact type of AFM. A self-sensing cantilever is attached on the actuator for detect the atomic force between tip and the media surface. VCM or PZT are used for actuator. This paper presents the method to simplify the actuator structure and the performance of each actuator for non-contact type AFM. Based on the frequency response separation scheme, the only one actuator plays roles 1311owing low frequency surface and modulating self-sensing cantilever tip in contrast with convention non-contact type AFM. 10 ${\mu}{\textrm}{m}$ standard grid sample imaged to verify proposed scheme. This result shows the possibility simplifying the actuator structure and reducing cost of non-contact type AFM.

  • PDF

Vibro-Contact Analysis of AFM Tip on Polymer Surface (폴리머 표면측정을 위한 AFM 팁의 접촉-진동 해석)

  • Hong, Sang-Hyuk;Lee, Soo-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.538-541
    • /
    • 2005
  • In tapping mode atomic force microscopy(TM-AFM). the vibro-contact response of a resonating tip is used to measure the nanoscale topology and other properties of a sample surface. However, the nonlinear tip-surface interact ions can affect the tip response and destabilize the tapping mode control. Especially it is difficult to obtain a good scanned image of high adhesion surfaces such as polymers and biomoleculars using conventional tapping mode control. In this study, theoretical and experimental investigations are made on the nonlinear dynamics and control of TM-AFM. To analyze the complex dynamics and control of the tapping tip, the classical contact models are adopted due to the surface adhesion. Also we report the surface adhesion is an additional important parameter to determine the control stability of TM-AFM. In addition, we prove that it is more adequate to use Johnson-Kendall-Roberts (JKR) contact model to obtain a reasonable tapping response in AFM for the soft and high adhesion samples.

  • PDF

Nanoscale Vibro-Contact Analysis of AFM Tip on Polymer Surface (폴리머 표면측정을 위한 AFM 팁의 나노스케일 접촉-진동 해석)

  • Lee, Soo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.135-140
    • /
    • 2006
  • In tapping mode atomic force microscopy (TM-AFM), the vibro-contact response of a resonating tip is used to measure the nanoscale topology and other properties of a sample surface. However, the nonlinear tipsurface interactions can affect the tip response and destabilize the tapping mode control. Especially it is difficult to obtain a good scanned image of high adhesion surfaces such as polymers and biomolecules using conventional tapping mode control. In this study, theoretical and experimental investigations are made on the nonlinear dynamics and control of TM-AFM. Also we report the surface adhesion is an additional important parameter to determine the control stability of TM-AFM. In addition, we proved that it was adequate to use Johnson-Kendall-Roberts (JKR) contact model to obtain a reasonable tapping response in AFM for the soft and high adhesion samples.

Characterization of Photoinduced Current in Poly-Si Solar Cell by Employing Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.35-38
    • /
    • 2012
  • In this study, we have attempted to characterize the photovoltaic effect in real-time measurement of photoinduced current in a poly-Si-based solar cell using photoconductive atomic force microscopy (PC-AFM). However, the high contact resistance that originates from the metal-semiconductor Schottky contact disturbs the current flow and makes it difficult to measure the photoinduced current. To solve this problem, a thin metallic film has been coated on the surface of the device, which successfully decreases the contact resistance. In the PC-AFM analysis, we used a metal-coated conducting cantilever tip as the top electrode of the solar cell and light from a halogen lamp was irradiated on the PC-AFM scanning region. As the light intensity becomes stronger, the current value increases up to $200{\mu}A$ at 80 W, as more electrons and hole carriers are generated because of the photovoltaic effect. The ratio of the conducting area at different conditions was calculated, and it showed a behavior similar to that generated by a photoinduced current. On analyzing the PC-AFM measurement results, we have verified the correlation between the light intensity and photoinduced current of the poly-Si-based solar cell in nanometer scale.

Nonlinear Dynamics of AFM Tip with Different Contact Models (접촉모델에 따른 AFM 팀의 배선형 동역학 비교)

  • 홍상혁;이수일;이장무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.73-76
    • /
    • 2004
  • Tapping mode atomic force microscopy (TM-AFM) utilizes the dynamic response of a resonating probe tip as it approaches and retracts from a sample to measure the topography and material properties of a nanostructure. We present recent results based on numerical techniques that yield new perspectives and insight into AFM. It is compared that the dynamic models including van der Waals and Derjaguin-Muller-Toporov(DMT) or Johnson-Kendall-Roberts(JKR) contact forces demonstrates that periodic solutions can be represented with respect to the approach distance and excitation frequency.

  • PDF

The Effects of Surface Energy and Roughness on Adhesion Force (표면에너지와 거칠기가 응착력에 미치는 영향)

  • Rha, Jong-Joo;Kwon, Sik-Cheol;Jeong, Yong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1335-1347
    • /
    • 2006
  • Surface energies calculated from measured contact angles between several solutions and test samples, such as Si wafer, $Al_2O_3$, $SiO_2$, PTFE(Polytertrafluoroethylene), and DLC(Diamond Like Carbon) films, based on geometric mean method and Lewis acid base method. In order to relate roughness to adhesion force, surface roughness of test samples were scanned large area and small by AFM(Atomic Force Microscopy). Roughness was representative of test samples in large scan area and comparable with AFM tip radius in small scan area. Adhesion forces between AFM tip and test samples were matched well with order of roughness rather then surface energy. When AFM tips having different radius were used to measure adhesion force on DLCI film, sharper AFM tip was, smaller adhesion force was measured. Therefore contact area was more important factor to determine adhesion force.

Effects of pH and the Existence of CO2 Gas on the Silica Surface Characteristics at Silica/Pb(II) Solution Interface (CO2 가스의 존재 여부와 용액의 pH가 Silica/Pb(II) 용액 계면에서 Silica 표면의 특성에 미치는 영향)

  • Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.263-271
    • /
    • 2003
  • Effects of the existence of $CO_2$ gas and pH on the silica surface characteristics at silica/Pb(II) and sodium dodecyl sulfonate (SDS, $C_{12}H_{25}SO_3Na$) solution interface were studied. The hydrophobic characteristics of silica surface was delineated by contact angle measurement and surface force measurement using atomic force microscopy (AFM). In $CO_2$ free condition provided by purging $N_2$ gas, the contact angle of fused silica surface in $10^{-4}M$ Pb(II) and SDS solution increased greatly up to $90^{\circ}$ compared with $40^{\circ}$ in atmospheric condition. It was due to the precipitation of $PbCO_3$ in atmospheric condition. In $CO_2$ free condition the change of contact angle and adhesion force ($F_{ad}$) in AFM, affected by pH change, was similar to the distribution of $PbOH^+$ ion in speciation diagram corresponding to $10^{-4}M$ total Pb(II). Therefore, it was convinced that the $PbOH^+$ ion among Pb(II) species would be the main adsorbing type on silica surface. Both of contact angle measurement and surface force measurement using AFM showed that the Pb only treatment made the silica surface hydrophobic. However, it could not be explained theoretically by current knowledge, and required further study in atomic level to solve the problem.

The Effects of AFM Microcantilever Characteristics on the Non-Contact Mode Measurements (AFM 마이크로캔틸레버 특성에 따른 비접촉모드의 영향 고찰)

  • Hong, S.H.;Lee, S.I.;Lee, J.M.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1391-1395
    • /
    • 2006
  • In non-contact mode atomic force microscopy, the response of a resonating tip is used to measure the nanoscale topography and other properties of a sample surface. However, the tip-surface interactions can affect the tip response and destabilize the non-contact mode control. Especially it is difficult to obtain a good scanned image of high adhesion surfaces such as polymers using conventional hard NCHR tip and non-contact mode control. In this study, experimental investigation is made on the non-contact mode imaging and we report the microcantilever having low stiffness (OMCL) is useful to measure the properties of samples such as elasticity. In addition, we proved that it was adequate to use low stiffness microcantilever to obtain a good scanned image in AFM for the soft and high adhesion sample.

  • PDF

Characterization of Fluorocarbon Thin Films by Contact Angle Measurements and AFM/LFM (접촉각 측정과 AFM/LFM을 이용한 불화 유기박막의 특성 평가)

  • 김준성;차남구;이강국;박진구;신형재
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2000
  • Teflon-like fluorocarbon thin film was deposited on various substrates by vapor deposition using PFDA (perfluorodecanoic acid). The fluorocarbon films were characterized by static/dynamic contact angle analysis, VASE (Variable-angle Spectroscopic Ellipsometry) and AFM/LFM (Atomic/Lateral Force Microscopy). Based on Lewis Acid/Base theory, the surface energy ($S_{E}$) of the films was calculated by the static contact angle measurement. The work of adhesion (WA) between de-ionized water and substrates was calculated by using the static contact data. The fluorocarbon films showed very similar values of the surface energy and work of adhesion to Teflon. All films showed larger hysteresis than that of Teflon. The roughness and relative friction force of films were measured by AFM and LFM. Even though the small reduction of surface roughness was found on film on $SiO_2$surface, the large reduction of relative friction farce was observed on all films. Especially the relative friction force on TEOS was decreased a quarter after film deposition. LFM images showed the formation of "strand-like"spheres on films that might be the reason far the large contact angle hysteresis.

  • PDF

Pore size effects of adhesion and friction for nanohoneycomb structures in AFM (원자현미경에서 나노허니컴 구조물의 홀 사이즈에 따른 점착 및 마찰 거동 분석)

  • Choi, Duk-Hyun;Lee, Pyung-So;Lee, Kun-Hong;Park, Hyun-Chul;Hwang, Woon-Bong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.129-132
    • /
    • 2005
  • This study analyzes the behavior of adhesion and friction according to the pore size of nanohoneycomb structures in atomic force microscope (AFM). Anodic aluminum oxide (AAO) films are fabricated as nanohoneycomb structures. According to the pore diameters of the nanohoneycomb structures, the adhesive forces and the frictional coefficients arc obtained in AFM, and the behaviors are analyzed in the view of the contact area between the sphere particle and nanohoneycomb substrate. The effective Young's moduli of the nanohoneycomb structures are measured from the nanoindentation tests, and the contact areas at zero applied load are calculated by combining the porosity of the nanohoneycomb structures and the contact radius determined from JKR and DMT theory.

  • PDF