• Title/Summary/Keyword: contiguous carbide

Search Result 4, Processing Time 0.018 seconds

Behaviors of Grain Growth in Carbide Added TiC Matrix Cermets (탄화물첨가 TiC기지 서멧의 입성장 거동)

  • Shin, Soon-GI;Lee, Jun-Hee;Lee, Hwa-Sang
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.825-830
    • /
    • 2002
  • The growth rate of solid grains in TiC-XC-2vol% and TiC-XC-30vo1% Ni cermets, where X=Zr, W or Mo, was fitted to an equation of the form $d^3$-$do^3$=Kt. The grain growth behavior during liquid phase sintering at 1673K decreased markedly with addition of $Mo_2$C or WC and increased with addition of ZrC. The contiguity ratio was greater in the alloys with smaller growth rate constant and decreased with increasing Ni content in the $TiC-Mo_2$C-Ni cermet. The grain growth mechanism could be explained by the effect of contiguous grain boundaries in restricting the overall grain growth.

Stucture and Intergranular Segregation of WC/WC Grain Boundaries in WC-Based Cemented Carbides (WC기 초경합금중 WC/WC界面의 구조와 입계편석)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.612-618
    • /
    • 2000
  • The WC/WC grain boundary structure and intergranular segregation in WC-Co and WC-VC-Co cemented carbides were investigated by high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy in order to elucidate whether contiguous boundaries were present or not at the atomic level. Some grain boundaries were separated by liquid phase, while others were contiguous at the atomic level. Cobalt was found to be segregated to WC/WC grain boundaries in WC-Co. Cobalt and vanadium were co-segregated to grain boundaries in WC-VC-Co. The segregation width in both materials was about 6 nm. These results suggest that the vanadium present in contiguous boundaries acts as an effective barrier to the migration of boundaries during sintering and annealing. This could explain the grain growth inhibiting mechanism of VC added to WC-Co.

  • PDF

Quantitative Investigation of Grain Growth in Carbide Added(Mo$_2$C, ZrC and WC) to TiC-Ni Matrix Cermets

  • Kim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • The growth of solid particles in TiC-XC-2vo1.% and TiC-XC-30vo1.% Ni alloys, (where X=Zr, W or Mo) was fitted to the equation of the form $d^3$-${do}^3$=Kt during the liquid phase sintering at 1,673K. Also, the grain growth behavior decreased markedly with the addition of ${MO}_2$C or WC and increased with the addition of zrC. The contiguity was greater in the alloys with a smaller growth rate constant and especially, decreased by increasing the Ni content in the TiC-${MO}_2$C-Ni alloy. In addition, the effect of the addition of carbide on the grain growth of 2 vo1.% Ni alloys was found to be similar to that of 30vo1.% Ni alloys. Consequently, the grain growth mechanism cannot be explained by the usual solution / reprecipitation process, but can be explained in terms of a new growth velocity equation, which includes the effects of contiguous carbide grain boundaries in restricting the overall grain growth, as well as the area of the solid / liquid interface in the alloy.

Interpretation of the Manufacturing Characteristics and the Mineral and Chemical Composition of Neolithic Pottery Excavated from the Jungsandong Site, Yeongjong Island, South Korea (영종도 중산동 신석기시대 토기의 광물 및 화학조성과 제작특성 해석)

  • Lee, Chan Hee;Kim, Ran Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.1
    • /
    • pp.4-31
    • /
    • 2018
  • The Neolithic pottery excavated from the Jungsandong site has been classified into four types of pottery (I: feldspar type, II: mica type, III: talc type and IV: asbestos type) according to their mineral composition. These four types of potteries generally appear to have undergone incomplete firing, while the level of oxidation in the type I pottery objects, which have a relatively higher clay content, was found to be particularly low. The type III objects, which have a high talc content, are judged to have been somewhat slow in removing carbon because they contain saponite belonging to the smectite group. Of the four types of pottery, type IV showed the highest redness and the most uniform characteristics, thus indicating a good level of oxidation. In particular, fixed carbide (C; 33.7 wt.%) with a thickness of about 1mm, and originating from organic substances, was detected inside the walls of the type I pottery, while the deep radial cracks in the outer surfaces of the pottery are thought to have been caused by repeated thermal shocks. Given that all of the pottery except for the type I artifacts are considered to be have been made for storage purposes, those containing talc and tremolite are easy to done liquid storing vessels based on an analysis of their material characteristics. As for the type II relics, which are composed of various minerals and exhibit poor physical properties, they seem to have been used for simple storage purposes. As domestic talc and asbestos mines were concentrated in the areas of Gyeonggi, Gangwon, Chungbuk, and Chungnam, it seems likely that talc and tremolite were produced as contiguous minerals. Considering the distance between the remains in Jungsandong and these mines and their geographical distribution, there is a possibility - albeit somewhat slight - that these mines were developed for the mining of various minerals. Although ultramafic rock masses - such as serpentine capable of generating talc and tremolite - have not been found in the Jungsandong area, limestone and biotite granite containing mica schist have been identified in the northwestern part of Yeongjong Island, indicating that small rock masses might have formed there in the past. Therefore, it is judged necessary to accumulate data on pottery containing talc and tremolite, other than the remains in Jungsandong, and to investigate the rocks and soils in the surrounding area with greater precision. The firing temperatures of the pottery found at the Jungsandong site were interpreted by analyzing the stability ranges of the mineral composition of each type. As a result, they have been estimated to range from 550 to $800^{\circ}C$ for the type I artifacts, and from 550 to $700^{\circ}C$ for the type I, II and IV artifacts. However, these temperatures are not the only factors to have affected their physical properties and firing temperature, and the types, particle sizes, and firing time of the clay should all be taken into consideration.