• 제목/요약/키워드: continuum beam analogy

검색결과 4건 처리시간 0.016초

연속 보 해석 기법에 의한 내부튜브를 가진 골조 튜브 구조물의 해석 (Continuum Beam Analogy for Analysis of Framed Tube Structures with Multiple Internal Tubes)

  • 이강건
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.215-221
    • /
    • 2000
  • A simple numerical modeling technique is proposed for the analysis of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the structural behaviours is reduced to the solution of a single second order linear differential equation. The numerical analysis uses the variational approach on the basis of the minimum potential energy priniciple. Three framed-tube sructures with single, two and three internal tubes are analysed to verify the applicability and reliability of the proposed method.

  • PDF

내부튜브가 있는 골조 튜브 구조물의 전단응력에 대한 수치해석 (Numerical Analysis of Shear Stresses in Framed Tube Structures with Internal Tube(s))

  • 이강건;이리형
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.511-521
    • /
    • 2002
  • 내부튜브를 가진 튜브 구조물의 보에 있는 전단응력을 평가하기 위하여 수치적인 해석기법이 제안되었다 이 기법은 휨과 전단변형을 고려한 튜브 보 개념 위에서 각각의 튜브를 연속 보로서 모델링 한다. 전단응력에 대한 수치해석은 패널에 작용하는 응력에 대한 탄성이론과 수학적인 유도를 기초로 하고 있다. 내부와 외부 튜브에 있는 변형곡선에 대한 표현식을 가정함으로써, 그 튜브에 있는 전단응력은 작용하중과 단면 2차 모멘트 그리고 구조물의 기하학적인 표현으로 구성된 선형 함수로서 표현된다 전단지체와 축 응력을 다룬 이전의 연구가 튜브내에 존재하는 전단응력을 수치적으로 해석하기 위하여 보완 발전되었다. 제안된 방법의 정확성과 유용성이 3개의 튜브 구조물의 해석을 통하여 증명 되었다

구형등가보 원리에 의한 튜브 구조물의 전단응력 해석 (Orthotropic Beam Analogy for Analysis of Shear Stresses in Framed-Tube Structures)

  • 이강건;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.393-400
    • /
    • 2001
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The method idealises the discrete tubes-in-tube structures as an assemblage of equivalent multiple beams, each composed of orthotropic plate panels. The numerical analysis of shear stress is based on the elastic theory in conjunction with the minimum potential energy principle. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of linear functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. The simplicity and accuracy of the proposed method are demonstrated through the solutions of three numerical examples.

  • PDF

The use of eccentric beam elements in the analysis of slab-on-girder bridges

  • Chan, Tommy H.T.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.85-102
    • /
    • 1999
  • With the advent of computer, the finite element method has become a most powerful numerical method for structural analysis. However, bridge designers are reluctant to use it in their designs because of its complex nature and its being time consuming in the preparation of the input data and analyzing the results. This paper describes the development of a computer based finite element model using the idea of eccentric beam elements for the analysis of slab-on-girder bridges. The proposed method is supported by a laboratory test using a reinforced concrete bridge model. Other bridge analytical schemes are also introduced and compared with the proposed method. The main aim of the comparison is to prove the effectiveness of the shell and eccentric beam modelling in the studies of lateral load distribution of slab-on-girder bridges. It is concluded that the proposed finite element method gives a closer to real idealization and its developed computer program, SHECAN, is also very simple to use. It is highly recommended to use it as an analytical tool for the design of slab-on-girder bridges.