• Title/Summary/Keyword: control channel access

Search Result 440, Processing Time 0.033 seconds

Analysis of Channel Access Delay in CR-MAC Protocol for Ad Hoc Cognitive Radio Wireless Sensor Networks without a Common Control Channel

  • Joshi, Gyanendra Prasad;Nam, Seung Yeob;Acharya, Srijana;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.911-923
    • /
    • 2014
  • Ad hoc cognitive radio wireless sensor networks allow secondary wireless sensor nodes to recognize spectrum opportunities and transmit data. Most existing protocols proposed for ad hoc cognitive radio wireless sensor networks require a dedicated common control channel. Allocating one channel just for control packet exchange is a waste of resources for channel-constrained networks. There are very few protocols that do not rely on a common control channel and that exchange channel-negotiation control packets during a pre-allocated time on the data channels. This, however, can require a substantial amount of time to access the channel when an incumbent is present on the channel, where the nodes are intended to negotiate for the data channel. This study examined channel access delay on cognitive radio wireless sensor networks that have no dedicated common control channel.

Random Access Channel with Retransmission Gain

  • Shi, Junmin;Sun, Yi;Zhang, Xiaochen;Xiao, Jizhong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.3
    • /
    • pp.148-159
    • /
    • 2013
  • An analysis of the throughput and stability region of random access systems is currently of interest in research and industry. This study evaluated the performance of a multiuser random access channel with a retransmission gain. The channel was composed of a media access control (MAC) determined by the transmission probabilities and a multiuser communication channel characterized by the packet reception probabilities as functions of the number of packet transmissions and the collision status. The analysis began with an illustrative two-user channel, and was extended to a general multiuser channel. For the two-user channel, a sufficient condition was derived, under which the maximum throughput was achieved with a control-free MAC. For the channel with retransmission gain, the maximum steady throughput was obtained in a closed form. The condition under which the random access channel can acquire retransmission gain was also obtained. The stability region of the general random access channel was derived. These results include those of the well-known orthogonal channel, collision channel and slotted Aloha channel with packet reception as a special instance. The analytical and numerical results showed that exploiting the retransmission gain can increase the throughput significantly and expand the stability region of the random access channel. The analytical results predicted the performance in the simulations quite well.

  • PDF

eMCCA: An Enhanced Mesh Coordinated Channel Access Mechanism for IEEE 802.11s Wireless Mesh Networks

  • Islam, Md. Shariful;Alam, Muhammad Mahbub;Hong, Choong-Seon;Lee, Sung-Won
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.639-654
    • /
    • 2011
  • In this paper, we present a channel access mechanism, referred to as the enhanced mesh coordinated channel access (eMCCA) mechanism, for IEEE 802.11s-based wireless mesh networks. The current draft of IEEE 802.11s includes an optional medium access control (MAC), denoted as MCCA, which is designed to provide collision-free and guaranteed channel access during reserved periods. However, the MCCA mechanism fails to achieve the desired goal in the presence of contending non-MCCA nodes; this is because non-MCCA nodes are not aware of MCCA reservations and have equal access opportunities during reserved periods. We first present a probabilistic analysis that reveals the extent to which the performance of MCCA may be affected by contending non-MCCA nodes. We then propose eMCCA, which allows MCCA-enabled nodes to enjoy collision-free and guaranteed channel access during reserved periods by means of prioritized and preemptive access mechanisms. Finally, we evaluate the performance of eMCCA through extensive simulations under different network scenarios. The simulation results indicate that eMCCA outperforms other mechanisms in terms of success rate, network throughput, end-to-end delay, packet-loss rate, and mesh coordinated channel access opportunity-utilization.

Performance Evaluation of the Common Channel Access Method in CDMA Packet Service System (CDMA 패킷 서비스 시스템에서 Common Channel Access 방법의 성능 평가)

  • Lee, Kang-Won
    • IE interfaces
    • /
    • v.17 no.3
    • /
    • pp.294-304
    • /
    • 2004
  • In the IS-95 packet service system, the radio channels are generally classified into the dedicated and common traffic channels. In this paper, the performance of the common traffic channel access method is evaluated using simulation. The simulation results are compared with those of random access method. Simulation results show that the capacity can be increased up to 25% by applying the proposed common channel access method. The delay problem and variance of BER are also discussed.

Performance Analysis of Opportunistic Spectrum Access Protocol for Multi-Channel Cognitive Radio Networks

  • Kim, Kyung Jae;Kwak, Kyung Sup;Choi, Bong Dae
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • Cognitive radio (CR) has emerged as one of effective methods to enhance the utilization of existing radio spectrum. Main principle of CR is that secondary users (SUs) are allowed to use the spectrum unused by primary users (PUs) without interfering PU's transmissions. In this paper, PUs operate on a slot-by-slot basis and SUs try to exploit the slots unused by PUs. We propose OSA protocols in the single channel and we propose an opportunistic spectrum access (OSA) protocols in the multi-channel cognitive radio networks with one control channel and several licensed channels where a slot is divided into contention phase and transmission phase. A slot is divided into reporting phase, contention phase and transmission phase. The reporting phase plays a role of finding idle channels unused by PUs and the contention phase plays a role of selecting a SU who will send packets in the data transmission phase. One SU is selected by carrier sense multiple access / collision avoidance (CSMA/CA) with request to send / clear to send (RTS/CTS) mechanism on control channel and the SU is allowed to occupy all remaining part of all idle channels during the current slot. For mathematical analysis, first we deal with the single-channel case and we model the proposed OSA media access control (MAC) protocol by three-dimensional discrete time Markov chain (DTMC) whose one-step transition probability matrix has a special structure so as to apply the censored Markov chain method to obtain the steady state distribution.We obtain the throughput and the distribution of access delay. Next we deal with the multi-channel case and obtain the throughput and the distribution of access delay by using results of single-channel case. In numerical results, our mathematical analysis is verified by simulations and we give numerical results on throughput and access delay of the proposed MAC protocol. Finally, we find the maximum allowable number of SUs satisfying the requirements on throughput and access delay.

Optimized Medium Access Probability for Networked Control Systems (네트워크 제어 시스템을 위한 최적화된 매체 접근 확률)

  • Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2457-2464
    • /
    • 2015
  • Distributed Networked Control Systems (NCSs) through wireless networks have a tremendous potential to improve the efficiency of various control systems. In this paper, we define the State Update Interval (SUI) as the elapsed time between successful state vector reports derived from the NCSs. A simple expression of the SUI is derived to characterize the key interactions between the control and communication layers. This performance measure is used to formulate a novel optimization problem where the objective function is the probability to meet the SUI constraint and the decision parameter is the channel access probability. We prove the existence and uniqueness of the optimal channel access probability of the optimization problem. Furthermore, the optimal channel access probability for NCSs is lower than the channel access probability to maximize the throughput. Numerical results indicate that the improvement of the success probability to meet the SUI constraint using the optimal channel access probability increases as the number of nodes increases with respect to that using the channel access probability to maximize the throughput.

Channel Statistical MAC Protocol for Cognitive Radio

  • Xiang, Gao;Zhu, Wenmin;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2010
  • opportunistic spectrum access (OSA) allows unlicensed users to share licensed spectrum in space and time with no or little interference to primary users, with bring new research challenges in MAC design. We propose a cognitive MAC protocol using statistical channel information and selecting appropriate idle channel for transmission. The protocol based on the CSMA/CA, exploits statistics of spectrum usage for decision making on channel access. Idle channel availability, spectrum hole sufficiency and available channel condition will be included in algorithm statistical information. The model include the control channel and data channel, the transmitter negotiates with receiver on transmission parameters through control channel, statistical decision results (successful rate of transmission) from exchanged transmission parameters of control channel should pass the threshold and decide the data transmission with spectrum hole on data channel. A dynamical sensing range as a important parameter introduced to maintain the our protocol performance. The proposed protocol's simulation will show that proposed protocol does improve the throughput performance via traditional opportunistic spectrum access MAC protocol.

A new WDM/TDM protocol for very high speed optical networks (고속광통신망용 새로운 WDM/TDM 프로토콜)

  • 이상록;이성근;박진우
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.50-58
    • /
    • 1996
  • This paper proposes the channel-access protocol suitable to a very high speed photonic WDM network with star configuration, which can provide a high channel utilization and insensitivity to the propagation delay. The proposed protocol employs a control channel and a simple status table to deal with the propagation delay which has been a major limiting factor in the performance of the very high speed optical communication networks. The control channel transmits control information in order to reserve access on data channels, and each node constitutes a status table after the reception of control pckets which holds information about the availbility of destination node and data channel. The proposed protocol is insensitive to the propagation delay time by removing necessity of the retransmission and by allowing parallel transmission of control packet and data packets. It is proved in analysis and discrete event simulation that the proposed protocol is superior in throughput and mean delay, especially at the high load conditions compared to the existing high speed channel-access protocols.

  • PDF

Channel Access Control Method for the CDMA Packet Service System (CDMA 패킷 서비스 시스템에서 채널 엑세스 제어 기법 연구)

  • 이강원
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.3
    • /
    • pp.169-184
    • /
    • 2003
  • In the IS-95 packet service system, the radio channels are generally classified into the dedicated and the common traffic channels. In this paper, a common traffic channel access method is proposed for the COMA packet service system to enhance the radio resource utilization while guaranteeing QoS to the users. The proposed method is based on the permission probability for the common traffic channel user. To derive permission probability, optimization models are developed for two different QoS constraints. Approximation methods are also developed.

UMMAC: A Multi-Channel MAC Protocol for Underwater Acoustic Networks

  • Su, Yishan;Jin, Zhigang
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • In this paper, we propose a multi-channel medium access control (MAC) protocol, named underwater multi-channel MAC protocol (UMMAC), for underwater acoustic networks (UANs). UMMAC is a split phase and reservation based multi-channel MAC protocol which enables hosts to utilize multiple channels via a channel allocation and power control algorithm (CAPC). In UMMAC, channel information of neighboring nodes is gathered via exchange of control packets. With such information, UMMAC allows for as many parallel transmissions as possible while avoiding using extra time slot for channel negotiation. By running CAPC algorithm, which aims at maximizing the network's capacity, users can allocate their transmission power and channels in a distributed way. The advantages of the proposed protocol are threefold: 1) Only one transceiver is needed for each node; 2) based on CAPC, hosts are coordinated to negotiate the channels and control power in a distributed way; 3) comparing with existing RTS/CTS MAC protocols, UMMAC do not introduce new overhead for channel negotiation. Simulation results show that UMMAC outperforms Slotted floor acquisition multiple access (FAMA) and multi-channel MAC (MMAC) in terms of network goodput (50% and 17% respectively in a certain scenario). Furthermore, UMMAC can lower the end-to-end delay and achieves a lower energy consumption compared to Slotted FAMA and MMAC.