• Title/Summary/Keyword: corrugation damper

Search Result 4, Processing Time 0.019 seconds

On the Damping Effects of Helmet Safety with a Corrugation Damper using Taguchi's Optimization Design (다구찌 설계법을 이용한 주름댐퍼를 갖는 헬멧안전의 감쇠효과에 관한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.34-40
    • /
    • 2008
  • Using the finite element method and Taguchi's design technique, the displacement in vertical direction, von Mises stress, and strain energy of the corrugation damper have been analyzed as functions of the extruded length and the thickness of the corrugation damper, and the upper and lower corner radii of the damper. The optimized profile design elements of a corrugation damper are very important for increasing a strain energy absorption capacity of a helmet structure, which is attacked by impulsive external forces. In this study, the optimized design data based on the Taguchi's method was computed as a corrugation damper length of L = 20 mm, a damper thickness of t = 2 mm, the upper corner radius of $R_1=4\;mm$, and the lower corner radius of $R_2=3\;mm$. The optimized design parameters of a corrugation damper indicated that the thickness and extruded length of a corrugation damper may affect to increase the strain energy, which absorbs the impact forces of the helmet.

  • PDF

Experimental Analysis of the Damper of a Loudspeaker (스피커 댐퍼의 실험적 분석)

  • 최도성;이성수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.192-196
    • /
    • 2004
  • A decision of the modulus of elasticity is made by using the degree of bending strength of materials for loudspeaker damper and the radius of corrugation lines and the radius of curvature of each corrugation as a geometrical element. And it is compared with experimental measurements. As a result. the elasticity of damper is proportional to the degree of bending strength and inversely proportional to the radius of corrugation lines and inversely proportional to the square of the radius of curvature. We made a small loudspeaker using a modified damper which take the form of inner small curvature and outer large curvature of each corrugation. This loudspeaker have the increased sensitivity in high frequency and also in low frequency region.

Finite Element Analysis on the Displacement Behavior Characteristics of a Safety Helmet with a Corrugation Damper (주름댐퍼를 갖는 안전헬멧의 변형거동특성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.22-26
    • /
    • 2009
  • In this paper, the displacement behavior and strain energy density characteristics of a safety helmet with various corrugation dampers has been analyzed based on the finite element analysis. The safety helmet is to protect impact forces and to absorb the impact energy. Three different helmet models with a corrugation damper have been compared as functions of the displacement and strain energy density characteristics when the maximum external impulsive force is imposed on the summit of the helmet. The computed FEM results show that the extruded corrugation damper is very useful to increase the damping effect of the helmet. This study indicates that the round corrugation damper may absorb the transferred impact energy successfully. Thus, this paper recommends round and long corrugation damper on the lower part of the helmet as a new design element.

  • PDF

Numerical Study on the Strength Safety and Displacement Behaviors of a Helmet (헬멧의 강도안전과 변형거동에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.41-45
    • /
    • 2008
  • This paper presents the numerical study on the strength safety and displacement behaviors of a helmet, which is to protect impact forces and to absorb the impact energy. Four different helmet models including a bead frame and a corrugation damper have been analyzed for the stress and the displacement characteristics by using the finite element method. The computed FEM results show that the bead frame on the summit area of the helmet is very useful to increase the strength safety of the helmet, and the corrugation damper on the lower part of the helmet may increase the energy absorption capacity. Thus, this paper recommends the bead frame and the corrugation damper as new design elements of the helmets.

  • PDF