• Title/Summary/Keyword: creep work density

Search Result 6, Processing Time 0.021 seconds

An Empirical Approach to Analyze Creep Rupture Behavior of P91 Steel

  • Aslam, Muhammad Junaid;Gur, Cemil Hakan
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.255-263
    • /
    • 2021
  • P91 steel has been a highly researched material because of its applicability for high-temperature applications. Considerable efforts have been made to produce experimental creep data and develop models for creep life prediction. As creep tests are expensive and difficult to conduct, it is vital to develop authenticated empirical methods from experimental results that can be utilized for better understanding of creep behavior and can be incorporated into computational models for reliable prediction of creep life. In this research, a series of creep rupture tests are performed on the P91 specimens within a stress range of 155 MPa to 200 MPa and temperature range of 640 ℃ (913 K) to 675 ℃ (948 K). The microstructure, hardness, and fracture surfaces of the specimens are investigated. To analyze the results of the creep rupture tests at a macro level, a parameter called creep work density is derived. Then, the relationships between various creep parameters such as strain, strain rate, time to rupture, creep damage tolerance factor, and creep work density are investigated, and various empirical equations are obtained.

Analysis of Land Creep in Ulju, South Korea (울주에서 발생한 땅밀림 특성)

  • Jae Hyeon Park;Sang Hyeon Lee;Han Byeol Kang;Hyun Kim;Eun Seok Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.14-30
    • /
    • 2024
  • This study characterized areas at risk of land creep by focusing on a site that has undergone this phenomenon in Ulju-gun, South Korea. Land creep in the area of interest was catalyzed by road expansion work conducted in 2022. The site was examined on the basis of its geological features, topography, effective soil depth, soil hardness, electrical resistivity, and subsurface profile. It consists of a slope covered with sparse vegetation and a concave top that retains rainwater during rainfall. Compositionally, land creep affected the shale, sandstone, and conglomerate formations on the site, which had little silt and more sand and clay compared with areas that were unaffected by land creep. An electrical resistivity survey enabled us to detect a groundwater zone at the site, which explains the softness of the soil. Finally, the effective soil depth at the land creep-affected area was 30.4 cm on average, indicating deep colluvial deposits. In contrast, unaffected sites had an effective soil depth of 24.7 cm on average. These results should facilitate the creation of systems for monitoring and preemptively responding to land creep, significantly mitigating the socioeconomic losses associated with this phenomenon.

A Study on Wear Properties of Alloys in High Temperature Condition (고온 환경에서 합금의 마모 및 마찰 특성에 관한 연구)

  • Choe, S.Y.;Nemati, Narguess;Kim, D.E.
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.24-29
    • /
    • 2019
  • In this work we investigated the friction and wear characteristics of a magnesium alloy, which has been receiving much attention as a light metal in industrial applications such as automobiles and aerospace. Magnesium is one of the lightest structural material that has high specific strength, lightweight, low density and good formability. However, current issue of using magnesium alloy is that magnesium has weakness against temperature. As the temperature increases, magnesium undergoes poor creep resistance and ease of softening, and therefore, its mechanical strength decreases sharply. To solve this issue, a new type of magnesium alloy that retains high strength at high temperature has been proposed. The tribological behavior of this alloy was investigated using a tribotester with reciprocating motion and heating plate. A stainless steel ball was used as a counter surface. Results showed that extrusion process has similar wear behavior to the commonly used casting process but retains good mechanical strength and durability. The presence of an alloying element enhanced the wear properties especially in high temperature. This study is expected to be utilized as fundamental data for the replacement of high density materials currently used in mechanical industries to a much lighter and durable heat-resistant materials.

Resistance Curves of Propagating Cracks for Concrete Three-Point Bend Specimens (콘크리트 삼점 휨시험편의 성장하는 균열에 대한 저항곡선)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.568-574
    • /
    • 2001
  • From measured responses of concrete three-point bend tests, the average values of the responses have been calculated. The fracture behavior of continuously propagating concrete crack has been analyzed from the average responses. The experimental parameters of this study were the initial notch sizes of 25.4㎜ and 6.4 ㎜ and the processing times of 2,000 sec. and 20 sec . The different notch sizes were used for the effects of the size of fracture process zone and specimen geometry, and the processing times for those of initial creep. However the load-point displacement rate in this study did not affect the experimental responses seriously. The average loads were calculated from the average external work of a series of tests, and average crack lengths were determined by using strain gages. Before the peak load, the resistance curve could be determined from the size of fracture process zone, but unstable crack propagation of 88㎜ occurred at the load-point displacement of 0.088∼0.154㎜ after the peak load. The average fracture energy density G$\_$F/$\^$ave/ = 115 N/m occurred during the unstable crack propagation. The fracture process zones were fully developed at the crack length of 111㎜, and the sizes of fracture process zone for initial notches of 25.4㎜ and 6.4㎜ were 86㎜ and 105㎜, respectively. Average fracture energy densities of the resistance curves after full development of fracture process zone were 229 N/m for the initial notch of 25.4㎜ and 284 N/m for 6.4㎜. The values were more than twice of G$\_$F/$\^$ave/.

Dislication Loop Models for Plastic Deformation of the AI-5.5 at.%Mg alloy (AI-5.5at.%MG합금의 소성변형을 규명하기 위한 전위환 모델의 고찰)

  • An, Seong-Uk;Jeong, Seung-Bu
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.349-356
    • /
    • 1994
  • For the deformation, life time prediction and improvement of the life time in high temperature materials it's very important to know the mechanism of deformation. For these mechanisms the dislocation loop models of Orlova et al. and Mills et al. are used often now. But they show controversial differencies, even if they have unertaken similar experimental tests with the same alloy of A1-5.5at.% Mg. In this work also the similiar tests of them have done under the same temperature of 573 K ; (1) The specimen was deformed by $\sigma$= 30MPa and $\varepsilon$=0.03. (2) Direct after creep deformation of $\sigma$= 30MPa and $\sigma$= 0.03 the stress reduction tests to 15, 10 and OMPa have been performed. (3) To study the loop models dislocation structure and dislocation density ( p ) have been observed.

  • PDF

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.