• Title/Summary/Keyword: critical voltage

Search Result 612, Processing Time 0.031 seconds

On-Line Calculation of the Critical Point of Voltage Collapse Based on Multiple Load Flow Solutions (다중조류계산을 이용한 전압붕괴 임계점의 On-Line 계산)

  • Nam, Hae-Kon;Kim, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.134-136
    • /
    • 1993
  • This paper presents a novel and efficient method to calculate the critical point of voltage collapse. Conjugate gradient and modified Newton-Raphson methods are employed to calculate two pairs of multiple load flow solutions for two operating conditions, i.e., both +mode and -mode voltages for two loading conditions respectively. Then these four voltage magnitude-load data sets of the bus which is most susceptible to voltage collapse, are fitted to third order polynomial using Lagrangian interpolation in order to represent approximate nose curve (P-V curve). This nose curve locates first estimate of the critical point of voltage collapse. The procedure described above is repeated near the critical point and the new estimate will be very close to the critical point. The proposed method is tested for the eleven bus Klos-Kerner system, with good accuracy and fast computation time.

  • PDF

Effect of Heat Treatment on Properties of Varistors (바리스터의 물성에 미치는 열처리 효과)

  • 홍경진;민용기;오수홍;조재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.955-958
    • /
    • 2001
  • The structure characteristics of varistor of Zn oxide to depend on the breakdown voltage has been investigated to annealing condition by additive material of Sb$_2$O$_3$ system. The breakdown voltage that has not doping Sb$_2$O$_3$ was 235[V]. ZnO varistors was shown ohmic properties when it's applied voltage was below critical voltage. It was shown non-ohmic properties over critical voltage, because current was increased with decreasing resistance. High voltage ZnO varistors had high breakdown voltage, but it had bad electrical stability with various surge. Sb$_2$O$_3$was increased non-linear coefficient in ZnO varistors grain boundary.

  • PDF

Development of Real-time Diagnosis Method for PEMFC Stack via Intermodulation Method (Intermodulation 방법에 의한 자동차용 연료전지 스택의 실시간 진단방법 개발)

  • Lee, Young-Hyun;Yoo, Seungyeol;Kim, Jonghyeon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.76-83
    • /
    • 2014
  • During PEMFC(Proton Exchange Membrane Fuel Cell) operation monitoring and diagnosis are important issues for reliability and durability. Stack defect can be followed by a critical cell voltage drop in the stack. One method for monitoring the cell voltage is CVM(Cell Voltage Monitoring), where all cells in the stack are electrically connected to a voltage measuring system and monitored these voltages. The other methods are based on the EIS(Electrochemical Impedance Spectroscopy) and on nonlinear frequency response. In this paper, intermodulation(IM) method for diagnosis PEMFC stack is introduced. To detect one or more critical PEMFC cell voltage PEMFC stack is excited by two or more test sinusoid current, and the frequency response of the stack voltage is analyzed. If one or more critical cell voltage exists, higher harmonics on the voltage frequency spectrum will appear. For the proposed IM method, stack simulation and experiments are conducted.

A Study on the Analysis and Control of Voltage Stability (전압안정성 분석 및 제어에 관한 연구)

  • 장수형;김규호;유석구
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.869-876
    • /
    • 1994
  • This paper presents an efficient method to calculate voltage collapse point and to avoid voltage instability. To evaluate voltage stability in power systems, it is necessary to get critical loading points. For this purpose, this paper uses linear programming to calculate efficiently voltage collapse point. Also, if index value becomes larger than given threshold value, voltage stability is improved by compensation of reactive power at selected bus. This algorithm is verified by simulation on the IEEE 14-bus sample system.

  • PDF

Anti-islanding Method by Harmonic Injection for Utility Interactive Inverter with Critical Load (중요부하를 갖는 계통연계형 인버터의 고조파주입에 의한 단독운전방지 기법)

  • Oh, Hyeong-Min;Choi, Se-Wan;Kim, Tae-Hee;Lee, Gi-Pung;Lee, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.315-321
    • /
    • 2012
  • The utility-interactive inverter with critical loads should supply continuous and stable voltage to critical loads even during the grid fault. The conventional control method which performs current control for grid-connected mode and voltage control for stand-alone mode undergoes the critical load voltage variation during grid fault. The critical load voltage may have large transient when the inverter performs mode transfer after the islanding detection. Recently, the indirect current control method which does not have the transient state during not only islanding detection but also the mode transfer has been proposed. However, since the voltage control is maintained even during the grid-connected mode it is difficult to detect the islanding. This paper proposes an active anti-islanding method suitable for the indirect current control method which does not have NDZ(Non-Detection Zone).

An Output Voltage Balance Control of Grid Connected Inverter by Phase Current Control at Critical Load Unbalanced Condition (계통연계 인버터의 주요 부하 불평형 시 상전류 제어를 통한 부하 상전압 평형 제어)

  • Tae-Hyeon Park;Hag-Wone Kim;Kwan-Yuhl Cho;Joon-Ki Min;Won-Il Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.22-29
    • /
    • 2023
  • A grid-connected inverter can be used in grid-connected or stand-alone modes. Generally, a grid-connected inverter operates in a grid-connected mode, but the inverter operates in stand-alone mode if grid faults occur. In the stand-alone mode, the grid-connected inverter must supply electric power to a critical load that needs to receive stable power even though grid faults occur. Generally, three-phase loads are used as critical loads, but a single phase is configured in some cases. In these conditions, the critical load is required to unbalance the load power consumption, which makes the three-phase load voltage unbalancd. This unbalanced voltage problem can cause fatal problems to the three-phase critical loads, and thus must be addressed. Hence, this paper proposes an algorithm to solve this unbalanced voltage problem by the individual phase current control. The proposed method is verified using Psim simulation and experiments.

Influence of Current Distributions on Critical Current and AC Loss Characteristics in a 3-conductor (전류분포가 3본-도체의 임계전류/교류손실 특성에 미치는 영향)

  • 류경우;최병주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.418-423
    • /
    • 2003
  • AC loss is an important issue in the design of high-T$\sub$c/ superconducting power cables which consist of a number of Bi-2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. So special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work we have prepared a conductor composed of three Bi-2223 tapes with different critical currents. The critical current and AC loss characteristics in the conductor have experimentally investigated. The results show that for uniform current distributions the conductor's critical current is proportional to the critical current of the Bi-2223 tape to which a voltage lead is attached. However it depends on the current non-uniformity parameter in the conductor rather than the tape's critical currents for nonuniform current distributions. The loss tests indicate that the AC loss is dependent on arrangements of voltage leads but not on their contact positions. The measured losses in the conductor also agree well with the sum of the transport losses measured in each Bi-2223 tape.

A Study on the Characteristics of Corona Critical Voltage and EMTP Simulatuon on Increasing Load Impedance and Pulse Repetition (전극길이 및 펄스반복율에 대한 부하임피던스 특성변화 및 EMTP 해석에 관한 연구)

  • Joung, Jong-Han;Song, Woo-Jung;Jeon, Jin-An;Lee, U-Soo;Kim, Hwi-Young;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1850-1852
    • /
    • 2002
  • In this paper, we studies EMTP analysis and characteristics of critical voltage of pulse corona and load impedance on variable electrode length. To obtain a stable Pulse voltage, we designed a compact pulse generator switched MOSFET and tested their characteristics by adjusting electrode length and pulse repetition. As a result, critical voltage of pulse corona and load impedance on increasing electrode length were decreased. These results indicate we can control critical voltage of pulse corona and suppress arc discharging between two electrodes.

  • PDF

The EMTP Analysis and Characteristics of Load Impedance on Various Electrode length, Pulse Repetition in Pulse Corona Discharging (펄스코로나 방전의 전극길이, 펄스반복율에 따른 부하 임피던스 변화 특성 및 EMTP 해석)

  • Jeong, Jong-Han;Song, U-Jeong;Jeon, Jin-An;Jeong, Hyeon-Ju;Hong, Jeong-Hwan;Kim, Hui-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.158-163
    • /
    • 2002
  • The pulsed Power system has been widely used to many applications, such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power system, often generator, etc. In this paper, we study EMTP analysis and characteristics of critical voltage and load in impedance on various electrode length of pulse corona. To obtain a stable pulse voltage, we designed a compact pulse generator switched MOSFET and tested their characteristics by adjusting electrode length and pulse repetition. As a re sult, critical voltage of pulse corona and load impedance on increasing electrode length were decreased. These results indicate we can control critical voltage of pulse corona and suppress arc discharging between two electrodes.

A Study on the Characteristics of Corona Critical Voltage on Increasing Load Impedance (전극길이 및 펄스반복율에 대한 부하임피던스 특성변화에 관한 연구)

  • Joung, Jong-Han;Song, Woo-Jung;Jeon, Jin-An;Lee, U-Soo;Kim, Hwi-Young;Kim, Hee-Je
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.184-186
    • /
    • 2002
  • In this paper, we studies EMTP analysis and characteristics of critical voltage of pulse corona and load impedance on variable electrode length. To obtain a stable pulse voltage, we designed a compact pulse generator switched MOSFET and tested their characteristics by adjusting electrode length and pulse repetition. As a result, critical voltage of pulse corona and load impedance on increasing electrode length were decreased. These results indicate we can control critical voltage of pulse corona and suppress arc discharging between two electrodes.

  • PDF