• Title/Summary/Keyword: crystallization

Search Result 2,445, Processing Time 0.031 seconds

Molecular Dynamics Study on External Field Induced Crystallization of Amorphous Argon Structure

  • Park, Seung-Ho;Cho, Sung-San;Lee, Joon-Sik;Choi, Young-Ki;Kwon, Oh-Myoung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2042-2048
    • /
    • 2004
  • A molecular dynamics study has been conducted on an external-force-field-induced isothermal crystallization process of amorphous structures as a new low-temperature athermal crystallization process. An external cyclic-force field with a dc bias is imposed on molecules selected randomly in an amorphous-phase of argon. Multiple peaks smoothed out in the radial distribution functions for amorphous states appear very clearly during the crystallization process that cannot be achieved otherwise. When the amorphous material is locally exposed to an external force field, crystallization starts and propagates from the interfacial region and crystallization growth rates can be estimated.

The Substrate Effects on Kinetics and Mechanism of Solid-Phase Crystallization of Amorphous Silicon Thin Films

  • Song, Yoon-Ho;Kang, Seung-Youl;Cho, Kyoung-Ik;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.19 no.1
    • /
    • pp.26-35
    • /
    • 1997
  • The substrate effects on solid-phase crystallization of amorphous silicon (a-Si) films deposited by low-pressure chemical vapor deposition (LPCVD) using $Si_2H_6$ gas have been extensively investigated. The a-Si films were prepared on various substrates, such as thermally oxidized Si wafer ($SiO_2$/Si), quartz and LPCVD-oxide, and annealed at 600$^{\circ}C$ in an $N_2$ ambient for crystallization. The crystallization behavior was found to be strongly dependent on the substrate even though all the silicon films were deposited in amorphous phase. It was first observed that crystallization in a-Si films deposited on the $SiO_2$/Si starts from the interface between the a-Si and the substrate, so called interface-interface-induced crystallization, while random nucleation process dominates on the other substrates. The different kinetics and mechanism of solid-phase crystallization is attributed to the structural disorderness of a-Si films, which is strongly affected by the surface roughness of the substrates.

  • PDF

Crystallization of Amorphous Silicon Films by Field-Aided Lateral Crystallization (FALC) technique at $350^{\circ}C$

  • Park, Kyoung-Wan;Cho, Ki-Taek;Choi, Duck-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.548-551
    • /
    • 2002
  • The crystallization of amorphous silicon (a-Si) was achieved using a field aided lateral crystallization (FALC) process at 350 $^{\circ}C$. Under the influence of an electric field, Cu is found to drastically enhance the lateral crystallization velocity of a-Si. When an electric field was applied to the selectively Cu-deposited a-Si film during the heat treatment at temperature as low as 350 $^{\circ}C$, dendrite-shaped crystallization of a-Si progressed toward Cu-free region and the crystallization from negative electrode side toward positive electrode side was accelerated. We identified that 1000${\AA}$ thick a-Si film was completely crystallized by Cu-FALC process at 350 $^{\circ}C$ by TEM analysis.

  • PDF

Technological Trend of Crystallization Research for Bioproduct Separation (Bioproduct 분리를 위한 결정화 연구 동향)

  • Kim, Woo-Sik;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.164-176
    • /
    • 2005
  • In bioengineering field, current academic trends and informations on crystallization technology for bioproduct separation were summarized. It is essential for utilizing the crystallization technology to understand the fundamental phenomena of crystallization of crystal nucleation, crystal growth, crystal agglomeration and population balance for the design of crystallizers. In general, the crystal nucleation that the crystalline solids occur from the solution is analyzed by Gibb's free energy change in the aspect of thermodynamics and in the present paper the crystal nucleation models based on the above thermodynamics are summarized by their key characteristics. The crystal growth and agglomeration, which have been studied over 50 years and are essential phenomena for separation technology, are reviewed from their basic concept to most leading edge trend of researches. In the material and population balances for the designs of crystallization separation process, the analysis of crystallizers is summarized. Thereon, the present review paper will academically contribute the understanding the crystallization phenomena and the design of the crystallization separation process.

Alternating Magnetic Field Crystallization of Amorphous Si Films

  • Kang, K.H.;Park, S.H.;Lee, S.J.;Nam, S.E.;Kim, H.J.
    • Journal of Information Display
    • /
    • v.4 no.1
    • /
    • pp.34-37
    • /
    • 2003
  • We investigate the solid phase crystallization of amorphous Si films on glass substrates under alternating magnetic field induction. The kinetics of crystallization are found to be greatly enhanced by alternating magnetic field. While complete crystallization takes heat treatment of more than 14 hours at 570$^{\circ}C$, it can be reduced by applying the megnetic field to 20 minutes. It is assumed that the enhancement of crystallization is associated with an electromotive force voltage generated by alternating magnetic field. This electric field applied in the amorphous Si may possibly be the reason for acceleration of the atomic mobility of crystallization through the modification of atomic potentials

Solid Phase Crystallization of LPCVD Amorphous Silicon Thin Films by Alternating Magnetic Flux (교번자속인가에 의한 비정질 실리콘 박막의 결정화거동에 대한 연구)

  • 송아론;박상진;박성계;남승의;김형준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.459-462
    • /
    • 2000
  • A new method for the fabrication of poly-Si films is reported using by alternating magnetic flux crystallization (AMFC) of LPCVD a-Si films. In this work we have studied the crystallization of LPCVD a-Si films by alternating magnetic flux. A-Si films were 1200$\AA$-thick deposited at 48$0^{\circ}C$ at a total pressure of 0.25Torr using Si$_2$H$_{6}$/H$_2$. After this step, these a-Si films were thermally annealed by Alternating Magnetic Flux at 43$0^{\circ}C$ for 1hours. The annealed films were characterized using X-ray diffraction (XRD), Raman Spectra, Atomic Force Microscopy(AFM). Both alternating magnetic flux crystallization and solid phase crystallization were investigated to compare enhanced crystallization a-Si. We have found that the low temperature crystallization method at 43$0^{\circ}C$ by alternating magnetic flux.x.

  • PDF

Enhanced Crystallization of Amorphous Silicon using Electric Field

  • Song, Kyung-Sub;Jun, Seung-Ik;Park, Sang-Hyun;Park, Duck-Kyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.243-246
    • /
    • 1997
  • A new technique for low temperature crystallization of amorphous silicon, called field aided lateral crystallization(FALC) was attempted. To demonstrate the concept of FALC, thin layer of nickel(30${\AA}$) was deposited on top of amorphous silicon film and the electric field was applied during the crystallization. The effects of electric field on the crystallization behavior of amorphous silicon film were investigated.

  • PDF

Crystallization of Poly(vinylidene fluoride)-SiO2 Hybrid Composites Prepared by a Sol-gel Process

  • Cho, Jae Whan;Sul, Kyun Il
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.135-140
    • /
    • 2001
  • Organic-inorganic hybrid composites consisting of poly(vinylidene fluoride) (PVDF) and SiO$_2$ were prepared through a sol-gel process and the crystallization behavior of PVDF in the presence of $SiO_2$ networks was investigated by spectroscopic, thermal and x-ray diffraction measurements. The hybrid composites obtained were relatively transparent, and brittleness increased with increasing content of tetraethoxysilane (TEOS). It was regarded from FT-lR and DSC thermal analyses that at least a certain interaction existed between PVDF molecules and the $SiO_2$ networks. X-ray diffraction measurements showed that all of the hybrid samples had a crystal structure of PVDF ${\gamma}$-phase. Fresh gel prepared from the sol-gel reaction showed a very weak x-ray diffraction peak near 2$\theta$=$21^{\circ}$ due to PVDF crystallization, and Intensity increased grade-ally with time after gelation. The crystallization behavior of PVDF was strongly affected by the amount of $SiO_2$ networks. That is, $SiO_2$ content directly influenced preference and disturbance fur crystallization. In polymer-rich hybrids, $SiO_2$ networks had a favorable effect on the extent of PVDF crystallization. In particular, the maximum portent crystallinity of PVDF occurred at the content of 3.7 wt% $SiO_2$ and was higher than that of pure PVDF. However. beyond about 10 wt% $SiO_2$, the crystallization of PVDF was strongly confined.

  • PDF

New Solid-phase Crystallization of Amorphous Silicon by Selective Area Heating

  • Kim, Do-Kyung;Jeong, Woong-Hee;Bae, Jung-Hyeon;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.117-120
    • /
    • 2009
  • A new crystallization method for amorphous silicon, called selective area heating (SAH), was proposed. The purpose of SAH is to improve the reliability of amorphous silicon films with extremely low thermal budgets to the glass substrate. The crystallization time shortened from that of the conventional solid-phase crystallization method. An isolated thin heater for SAH was fabricated on a quartz substrate with a Pt layer. To investigate the crystalline properties, Raman scattering spectra were used. The crystalline transverse optic phonon peak was at about 519 $cm^{-1}$, which shows that the films were crystallized. The effect of the crystallization time on the varying thickness of the $SiO_2$ films was investigated. The crystallization area in the 400nm-thick $SiO_2$ film was larger than those of the $SiO_2$ films with other thicknesses after SAH at 16 W for 2 min. The results show that a $SiO_2$ capping layer acts as storage layer for thermal energy. SAH is thus suggested as a new crystallization method for large-area electronic device applications.

Preparation and Crystallization Behavior of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Grafted with Poly(N-vinylpyrrolidone) (Poly(N-vinylpyrrolidone)이 그래프트된 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 공중합체의 합성 및 결정화 거동)

  • Wang, Wei;Zhang, Yu;Chen, Yanmo
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.385-392
    • /
    • 2007
  • Poly (N-vinylpyrrolidone) (PVP) groups were grafted onto a poly(3-hydroxybutyrate-co-3-hydroryvalerate) (PHBV) backbone in order to modify its properties and synthesize a novel biocompatible copolymer. The crystallization behavior of PHBV and grafted PHBV was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). During the cooling-induced crystallization process, the crystallization temperature and the crystallization rate of the grafted PHBV decreased with increasing PVP weight fraction. On the heating scans of all grafted PHBV samples, a new crystallization exothermic peak appeared at almost the same temperature, suggesting the operation of a recrystallization process, while the melting temperature ($T_m$) and the apparent enthalpy of fusion (${\Delta}H_f$) were not affected by graft modification. During the isothermal crystallization process at the same temperature, the presence of side PVP groups decreased the spherulitic growth rate and the spherulitic band spacing with increasing PVP weight fraction in samples.