• Title/Summary/Keyword: cubic operator

Search Result 13, Processing Time 0.028 seconds

COMPUTATIONS ON PRECONDITIONING CUBIC SPLINE COLLOCATION METHOD OF ELLIPTIC EQUATIONS

  • Lee, Yong-Hun
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.371-386
    • /
    • 2001
  • In this work we investigate the finite element preconditioning method for the $C^1$-cubic spline collocation discretizations for an elliptic operator A defined by $Au := -{\Delta}u + a_1u_x+a_2u_y+a_0u$ in the unit square with some boundary conditions. We compute the condition number and the numerical solution of the preconditioning system for the several example problems. Finally, we compare the this preconditioning system with the another preconditioning system.

Eulerian-Lagrangian Modeling of One-Dimensional Dispersion Equation in Nonuniform Flow (부등류조건에서 종확산방정식의 Eulerian-Lagrangian 모형)

  • 김대근;서일원
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.907-914
    • /
    • 2002
  • Various Eulerian-Lagrangian models for the one-dimensional longitudinal dispersion equation in nonuniform flow were studied comparatively. In the models studied, the transport equation was decoupled into two component parts by the operator-splitting approach; one part is governing advection and the other is governing dispersion. The advection equation has been solved by using the method of characteristics following fluid particles along the characteristic line and the results were interpolated onto an Eulerian grid on which the dispersion equation was solved by Crank-Nicholson type finite difference method. In the solution of the advection equation, Lagrange fifth, cubic spline, Hermite third and fifth interpolating polynomials were tested by numerical experiment and theoretical error analysis. Among these, Hermite interpolating polynomials are generally superior to Lagrange and cubic spline interpolating polynomials in reducing both dissipation and dispersion errors.

A simple method to compute a periodic solution of the Poisson equation with no boundary conditions

  • Moon Byung Doo;Lee Jang Soo;Lee Dong Young;Kwon Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.286-290
    • /
    • 2005
  • We consider the poisson equation where the functions involved are periodic including the solution function. Let $R=[0,1]{\times}[0,l]{\times}[0,1]$ be the region of interest and let $\phi$(x,y,z) be an arbitrary periodic function defined in the region R such that $\phi$(x,y,z) satisfies $\phi$(x+1, y, z)=$\phi$(x, y+1, z)=$\phi$(x, y, z+1)=$\phi$(x,y,z) for all x,y,z. We describe a very simple method for solving the equation ${\nabla}^2u(x, y, z)$ = $\phi$(x, y, z) based on the cubic spline interpolation of u(x, y, z); using the requirement that each interval [0,1] is a multiple of the period in the corresponding coordinates, the Laplacian operator applied to the cubic spline interpolation of u(x, y, z) can be replaced by a square matrix. The solution can then be computed simply by multiplying $\phi$(x, y, z) by the inverse of this matrix. A description on how the storage of nearly a Giga byte for $20{\times}20{\times}20$ nodes, equivalent to a $8000{\times}8000$ matrix is handled by using the fuzzy rule table method and a description on how the shape preserving property of the Laplacian operator will be affected by this approximation are included.

Automatic Mesh Generation with Quadrilateral Finite Elements (사각형 유한요소망의 자동생성)

  • 채수원;신보성;민중기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2995-3006
    • /
    • 1993
  • An automatic mesh generation scheme has been developed for finite element analysis with two-dimensional, quadrilateral elements. The basic strategies of the method are to transform the analysis domain into loops with key nodes and the loops are recursively subdivided into subloops with the use of best split lines. Finally by using the basic loop operators, the meshes are completed. In this algorithm an eight-node loop operator is proposed, which is useful in the area where the change of element size is large and the splitting criteria for subdividing the loops have also been modified to the existing algorithms. Lines, arcs, and cubic spline curves are used to define the boundaries of analysis domain. Sample meshes for several geometries are presented to demonstrate the robustness of the algorithm.

THE CAYLEY-BACHARACH THEOREM VIA TRUNCATED MOMENT PROBLEMS

  • Yoo, Seonguk
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.741-747
    • /
    • 2021
  • The Cayley-Bacharach theorem says that every cubic curve on an algebraically closed field that passes through a given 8 points must contain a fixed ninth point, counting multiplicities. Ren et al. introduced a concrete formula for the ninth point in terms of the 8 points [4]. We would like to consider a different approach to find the ninth point via the theory of truncated moment problems. Various connections between algebraic geometry and truncated moment problems have been discussed recently; thus, the main result of this note aims to observe an interplay between linear algebra, operator theory, and real algebraic geometry.

Application of Cubic Spline Synthesis in On-Line Core Axial Power Distribution Monitoring (실시간 노심출력분포 측정을 위한 3차 SPLINE합성법의 응용)

  • In, Wang-Kee;Yoo, Hyung-Keun;Auh, Geun-Sun;Lee, Chong-Chul;Kim, Si-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.316-320
    • /
    • 1991
  • The Core Operating Limit Supervisory System (COLSS) is digital computer based on-line monitoring system that is designed to assist the operator in monitoring of the Limiting Conditions for Operation. A current COLSS calculates axial power distribution based on in-core detector signals using 5th order Fourier series method. It was found that the 5th elder Fourier series method was not accurate for certain axial power shapes, especially saddle power shapes, resulting in thermal margin decrease. A cubic spline synthesis was applied to the COLSS in order to improve the axial power distribution monitoring for the various axial power shapes. The results showed that the cubic spline synthesis simulated more accurately the axial power shapes, up to 5% in RMS errors, compared to those of the Fourier series.

  • PDF

Data Acquisition and Analysis of a Measuring Machine for Marine Engine′s Cams (선박 엔진용 캠 전용 측정기의 데이터 취득 및 해석)

  • 강재관;이경휘
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.160-166
    • /
    • 2002
  • In this paper, data acquisition and analysis of a measuring machine for marine engine's cams is discussed. A rotary encoder and linear scale of the machine to measure angular and linear displacement respectively are interfaced to the PC via encoder board with 2 channels. The design and measuring data are interpolated by cubic spline curves to compute the precision error which is defined by the maximum and minimum distances between two curves. The minimum zone fit of ISO is employed to evaluate the geometric deviation. The developed system takes only 5 minutes to measure and analyze while the CMM takes over 1 hours even with a skilled operator.

Geometric Means of Positive Operators

  • Nakamura, Noboru
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.167-181
    • /
    • 2009
  • Based on Ricatti equation $XA^{-1}X=B$ for two (positive invertible) operators A and B which has the geometric mean $A{\sharp}B$ as its solution, we consider a cubic equation $X(A{\sharp}B)^{-1}X(A{\sharp}B)^{-1}X=C$ for A, B and C. The solution X = $(A{\sharp}B){\sharp}_{\frac{1}{3}}C$ is a candidate of the geometric mean of the three operators. However, this solution is not invariant under permutation unlike the geometric mean of two operators. To supply the lack of the property, we adopt a limiting process due to Ando-Li-Mathias. We define reasonable geometric means of k operators for all integers $k{\geq}2$ by induction. For three positive operators, in particular, we define the weighted geometric mean as an extension of that of two operators.