• Title/Summary/Keyword: cutting cost

Search Result 437, Processing Time 0.024 seconds

A study on automatic selection of optimal cutting condition on machining in view of economics (기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구)

  • 이길우;이용성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

Monitoring of Dry Cutting and Applications of Cutting Fluid for Ball End Milling

  • Tangjitsitcharoen, Somkiat;Rungruang, Channarong;Laiaddee, Duangta
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.3
    • /
    • pp.242-250
    • /
    • 2010
  • For economical and environmental reasons, the aim of this research is hence to monitor the cutting conditions with the dry cutting, the wet cutting, and the mist cutting to obtain the proper cutting condition for the plain carbon steel with the ball end milling based on the consideration of the surface roughness of the machined parts, the life of the cutting tools, the use of the cutting fluids, the density of the particles of cutting fluids dispersed in the working area, and the cost of cutting. The experimentally obtained results of the relation between tool wear and surface roughness, the relation between tool wear and cutting force, and the relation between cutting force and surface roughness are correspondent with the same trend. The phenomena of surface roughness and tool wear can be explained by the in-process cutting forces. The models of the tool wear with the cutting conditions and the cutting times are proposed to estimate the tool cost for the different cooling strategies based on the experimental data using the multiple regression technique. The cutting cost is calculated from the costs of cutting tool and cutting fluid. The mist cutting gives the lowest cutting cost as compared to others. The experimentally obtained proper cutting condition is determined based on the experimental results referring to the criteria.

A Study on Machinability and Cost Evaluation of MQL Milling Process (MQL 밀링가공의 가공성 및 비용 평가에 관한 연구)

  • Lee, Ji-Hyung;Ko, Tae-Jo;Baek, Dae-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.26-34
    • /
    • 2009
  • This paper is related to MQL (Minimum Quantity Lubrication) milling process, which is one of the environmentally friendly cuttings. The objective is to compare MQL milling process with conventional cutting fluid systems. To this end, machinability of MQL milling process was investigated, followed by the cost evaluation. Cutting force, surface roughness, tool wear, and cutting temperature were compared with each cutting fluid method. Consequently, total production costs wear evaluated with the mathematical models in terms of machining cost and cutting fluid loss.

Machining Characteristics of Ti-6Al-4V Thread (Ti-6Al-4V 티타늄 합금나사의 절삭 특성)

  • Kim, Hyung-Sun;Choi, Jong-Guen;Kim, Dong-Min;Lyu, Min-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.514-520
    • /
    • 2009
  • Titanium is one of the most attractive materials due to their superior properties of high specific strength and excellent corrosion resistance. The applications in aerospace and medical industries demand machining process more frequently to obtain more precise products. Machining of titanium is faced with strong challenges such as increased component complexity i.e. airframe components manufacturing processes. The machining cost on titanium have traditionally demanded high cutting tool consumable cost and slow machining cycle times. Similarly, the high wear of the cutting tools restricts the cutting process capabilities. Titanium screws applied to fasten parts In the several corrosion environment. In the thread cutting of titanium alloys, the key point for successful work is to select proper cutting methods and tool materials. This study suggests a guidance fur selecting the cutting methods and the tool materials to improve thread quality and productivity. Some experiments investigate surface roughnesses, cutting forces and tool wear with change of various cutting parameters including tool materials, cutting methods, cutting speed. As the results, the P10 type insert tip was assured of the best for thread cutting of Ti-6Al-4V titanium alloy. Also the initial depth of infeed was desirable to use the value below 0.5mm as the uniform cutting area method is applied.

  • PDF

A Study on in Ball End Mill Cutting Operation the Cutting characteristics (Ball End Mill 가공시 가동특성에 관한 연구)

  • 오영생
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.196-201
    • /
    • 1997
  • The biggest challenge facing today's manufacturing industry is better quality and high productivit. From an economic point of view, productivity is the most important parameter, as high productivity will reduce the cost. However, the customers of today are not only cost concerned, but also quality conscious. So high accuracy levels should also be achieved in the manufacturing process. The aim of this paper is to get a comprehensive understanding of its machinability properties and to investigate the relationship between cutting conditions and surface roughness for Ball End Mill cutting process so as to enhance its practical application.

  • PDF

Development of a Channel Cutting Die Set (형재 절단금형 개발에 관한 연구)

  • Park, Kuwi-Sun;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.117-122
    • /
    • 2001
  • Many kinds of channels are used in industrial equipment and production machinery. Although mechanical saw has been used to cut many sorts of channels, there is cost rise problem because of low productivity. Shearing of channel has a special place because it helps to cut expected shape and size easily. A channel cutting die set which can be mounted and used on a hydraulic press is developed to improve the productivity of channel cutting process. Mode for the channel cutting is divided into single cut and double cut method. This study use double cut method, and the developed channel cutting die set is composed of upper and lower die set. Shearing time can be reduced from 40 minutes to 20 seconds using the developed channel cutting die set. The productivity of channel cutting process can be increased with shearing time reduction as well as cost reduction.

  • PDF

Optimum design of steel floor system: effect of floor division number, deck thickness and castellated beams

  • Kaveh, A.;Ghafari, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.933-950
    • /
    • 2016
  • Decks, interior beams, edge beams and girders are the parts of a steel floor system. If the deck is optimized without considering beam optimization, finding best result is simple. However, a deck with higher cost may increase the composite action of the beams and decrease the beam cost reducing the total cost. Also different number of floor divisions can improve the total floor cost. Increasing beam capacity by using castellated beams is other efficient method to save the costs. In this study, floor optimization is performed and these three issues are discussed. Floor division number and deck sections are some of the variables. Also for each beam, profile section of the beam, beam cutting depth, cutting angle, spacing between holes and number of filled holes at the ends of castellated beams are other variables. Constraints include the application of stress, stability, deflection and vibration limitations according to the load and resistance factor (LRFD) design. Objective function is the total cost of the floor consisting of the steel profile cost, cutting and welding cost, concrete cost, steel deck cost, shear stud cost and construction costs. Optimization is performed by enhanced colliding body optimization (ECBO), Results show that using castellated beams, selecting a deck with higher price and considering different number of floor divisions can decrease the total cost of the floor.

Cutting Force Measuring System Using the Load Cell for a Milling Process (로드셀을 이용한 밀링 가공시의 절삭력 측정시스템)

  • Kang, E. G.;Park, S. J.;Lee, S. J.;Kwon, H. D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.133-140
    • /
    • 2001
  • This paper suggests another system for a cutting force measuring tool in a milling process. Generally, tool dynamometer is taken into account for the most appropriate cutting force measuring tool in the analysis of cutting mechanism. However, high price and limited space make it difficult to be in-situ system for controllable milling process. Although an alternative method using AC current of servo-motor has been suggested, it is unsuitable for cutting force control because of small upper frequency limit and noise. The cutting force measuring system is composed of two load cells placed between the moving table bracket and the nut flange part of ballscrew. It has many advantages such as low cost and wide range measurement than tool dynamometer because of the built-in moving table and the low cost load cell. The static and dynamic model of the measuring system using imbeded load cell is introduced. Various Experiments are carried out to validate both models. By comparing the cutting forces from a series of end milling experiments on the tool dynamometer and the system developed in this paper, the accuracy of the cutting force measuring system is verified. Upper frequency limit is measured by the experiment of dynamic characteristics.

  • PDF

Optimal scheduling of the paper mill process using two - step strategy method

  • Kim, Donghoon;Il Moon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.163.3-163
    • /
    • 2001
  • This paper presents the two-step strategy method of performing optimal scheduling of paper mill processes using MINLP (Mixed-Integer Non-Linear Programming) considering the trim loss problem in sheet cutting processes. The mathematical model for a sheet cutting process in the form of MINLP is developed in this study, and minimizing total cost is performed considering the cost of raw paper roll, :hanging cutting patterns, storage of over-product and recycling/burning trim. The paper has been used to deliver and conserve information for a long time, and it is needed to have various sizes and weights ...

  • PDF

3D Cutting Machine of EPS Foam for Manufacturing Free-Formed Concrete Mold (비정형 콘크리트 거푸집 제작을 위한 EPS Foam의 3D 가공기계)

  • Seo, Junghwan;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • We used a construction method using a CNC milling machine, where free-formed molds were made by cutting EPS (Expanded PolyStyrene) foam with the CNC machine, to build free-formed buildings. CNC milling is off-the-shelf technology that can easily cut EPS foam; however its production cost is too high and the time to manufacture an EPS mold is too long. This paper proposes a novel cutting machine with a fast and cost effective mechanism to manufacture EPS concrete molds. Our machine comprises a cutter and Cartesian coordinate type moving mechanism, where the cutter cuts EPS foam using a hotwire in the shape of '$\sqcap$' and is capable of adjusting its cutting angle in real-time while keeping its cutting width. We proved through cutting experiments on the CNC machine that cutting time was greatly shortened compared to the conventional method and that the resulting concrete mold satisfied manufacturing precision.