• Title/Summary/Keyword: cyanobacteria

Search Result 490, Processing Time 0.022 seconds

Biotechnological Potential of Marine Cyanobacteria in Wastewater Treatment: Disinfection of Raw Sewage by Oscillatoria willei BDU130511

  • Uma, L.;Selvaraj, K.;Manjula, R.;Subramanian, G.;Nagarkar, Sanjay
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.699-701
    • /
    • 2002
  • The current study demonstrates the ability of the marine cyanobacterium Oscillatoria willei BDU130511 to disinfect raw sewage. Within a holding time of 3 h under laboratory conditions, the organism drastically reduced in the total bacterial and coliform counts at various pH levels, in both unbuffered and buffered sewage, thereby suggesting a potential role for cyanobacteria in wastewater treatment.

Spatial Distribution Mapping of Cyanobacteria in Daecheong Reservoir Using the Satellite Imagery (위성영상을 이용한 대청호 남조류의 공간 분포 맵핑)

  • Back, Shin Cheol;Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.53-63
    • /
    • 2016
  • Monitoring of cyanobacteria bloom in reservoir systems is important for water managers responsible of water supply system. Cyanobacteria affect the taste and smell of water and pose considerable filtration problems at water use places. Harmful cyanobacteria bloom in reservoir have significant economic impacts. We develop a new method for estimating the cyanobacteria bloom using Landsat TM and ETM+ data. Developed model was calibrated and cross-validated with existing in situ measurements from Daecheong Reservoir's Water Quality Monitoring Program and Algae Alarm System. Measurements data of three stations taken from 2004 to 2012 were matched with radiometrically converted reflectance data from the Landsat TM and ETM+ sensor. Stepwise multiple linear regression was used to select wavelengths in the Landsat TM and ETM+ bands 1, 2 and 4 that were most significant for predicting cyanobacteria cell number and bio-volume. Based on statistical analysis, the linear models were that included visible band ratios slightly outperformed single band models. The final monitoring models captured the extents of cyanobacteria blooms throughout the 2004-2012 study period. The results serve as an added broad area monitoring tool for water resource managers and present new insight into the initiation and propagation of cyanobacteria blooms in Daecheong reservoir.

Impacts of Ultraviolet-B Radiation on Rice-Field Cyanobacteria

  • Sinha, Rajeshwar P.;Hader, Donat-P.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.439-441
    • /
    • 2002
  • Cyanobacteria are the dominant micro flora in rice-fields, contributing significantly to fertility as a natural biofertilizer. Recent studies show a continuous depletion of the stratospheric ozone layer, and the consequent increase in solar UV-B (280-315 nm) radiation reaching the Earth's surface. UV-B radiation causes reduction in growth, survival, protein content, heterocyst frequency and fixation of carbon and nitrogen in many cyanobacteria. UV -B induced bleaching of pigments, disassembly of phycobilisomal complexes, thymine dimer formation and alterations in membrane permeability have also been encounterd in a number of cyanobacteria. However, certain cyanobacteria produce photoprotective compounds such as water soluble colorless mycosporine-like amino acids (MAAs) and the lipid soluble yellow-brown colored sheath pigment, scytonemin, to counteract the damaging effects of UV-B. Cyanobacteria, such as Anabaena sp., Nostoc commune, Scytonema sp. and Lyngbya sp. were isolated from rice fields and other habitats in India and screened for the presence of photoprotective compounds. A circadian induction of the synthesis of MAAs by UV -B was noted in a number of cyanobacteria. Polychromatic action spectra for the induction of MAAs in Anabaena sp. and Nostoc commune also show the induction to be UV-B dependent peaking at 290 nm. Another photoprotective compound, scytonemin, with an absorption maximum at 386 nm (also absorbs at 300, 278, 252 and 212 nm), was detected in many cyanobacteria. In conclusion, a particular cyanobacterium having photoprotective compounds may be a potent candidate as biofertilizer for crop plants.

  • PDF

Extracellular Products from Cyanobacteria (시아노박테리아의 세포외산물에 대한 연구)

  • Kwon, Jong-Hee;Kim, Gi-Eun
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.398-402
    • /
    • 2008
  • Cyanobacteria havebeen identified as one of the most promising group producing novel biochemically active natural products. Cyanobacteria are a very old group of prokaryotic organisms that produce very diverse secondary metabolites, especially non-ribosomal peptide and polyketide structures. Though many useful natural products have been identified in cyanobacterial biomass, cyanobacteria produce also extracellular proteins related with NRPS/PKS. Detection of unknown secondary metabolites in medium was carried in the present study by a screening of 98 cyanobacterial strains. A degenerated PCR technique as molecular approaches was used for general screening of NRPS/PKS gene in cyanobacteria. A putative PKS gene was detected by DKF/DKR primer in 38 strains (38.8%) and PCR amplicons resulted from a presence of NRPS gene were showed by MTF2/MTR2 primer in 30 strains (30.6%) and by A3/A7 primer in 26 strains (26.5%). HPLC analysis for a detection of natural products was performed in extracts from medium in which cyanobacteria containing putative PKS or NRPS were cultivated. CBT57, CBT62, CBT590 and CBT632 strains were screened for a production of extracellular natural products. 5 pure substances were detected from medium of these cyanobacteria.

Genetic Diversity of Korean Cyanobacteria determined by DNA polymorphisms within the Phycocyanin Locus (Phycocyanin locus내의 DNA Polymorphism에 의한 한국산 Cyanobacteria의 유전적 다양성)

  • 박진숙;권주리;유순애
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.249-253
    • /
    • 2000
  • The genetic diversity among Korean cyanobacteria was assessed by restriction fragment length polymorphism(RFLP) analysis of PCR products from the phycocyanin locus. Strains of all the genera tested were successfully amplified, and the size of amplified fragments was approximately 700bp. The restriction patterns generated by AluI, MspI, and HaeIII were conserved for strains within each of genera studied and were specific to the genus level. Intrageneric delineation of strains was revealed by the enzyme, CfoI for members of genera Anabeana and Synechocystis. Phenogram derived from the different RFLP patterns revealed a coherent cluster among Anabeana, Chlorogloea, and Synechocystis strains. PC-RFLP methods provided useful tools for classification of cyanobacteria.

  • PDF

A Study on the Relationship between Cyanobacteria and Environmental Factors in Yeongcheon Lake (영천호에서 남조류 발생과 환경요인의 관련성 연구)

  • Lee, Hyeon-Mi;Shin, Ra-Young;Lee, Jung-Ho;Park, Jong-geun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.352-361
    • /
    • 2019
  • The purpose of this study is to analyze the characteristics and correlations of the Yeongcheon Lake in order to reduce the occurrence of harmful cyanobacteria. In this study, we investigated the water quality and phytoplankton of the lake from May to November in 2017. Correlation and data mining analyses were performed to analyze the relationship between the two factors. The water temperature was lowest at the point where the Yeongcheon Lake inflow occurs at Imha Lake. It was highest at the point where the outflow occurs to Angye Lake. The pH was also highest at the outflow point, but in the case of DO, it was highest at the midpoint between the inflow and outflow. The main cyanobacteria that emerged during the study period were Oscillatorialimosa, Microcysti saeruginosa and Aphanizomenon flos-aquae. As a result of correlation analysis, the water temperature, inflow, COD loading, TOC loading at the inflow point of the Yeongcheon Lake were the items that were related to the harmful cyanobacteria. The data mining analysis indicated that the TP loading and harmful cyanobacteria in the inflow point of the Yeongcheon Lake were influential on the detrimental cyanobacteria in the Yeongcheon Lake outflow point. When the TP loading was less than 39.0 kg/day at the inflow site, it was expected that the amount of harmful cyanobacteria could be maintained below 10,000 cells/mL.

Cyanobacterial Diversity Analysis Using cpcBA-Intergenic Spacer Region (cpcBA-Intergenic Spacer Region을 이용한 Cyanobacteria의 다양성 분석)

  • Choi Gang-Guk;Park Yong-Ha;Ahn Chi-Yong;Bae Myoung-Sook;Oh Hee-Mock
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.287-292
    • /
    • 2005
  • The cyanobacterial diversity was analyzed by restriction fragment length polymorphism (RFLP) of PCR-amplified rpcBA-Intergenic Spacer (IGS) genes and cpcBA-IGS gene sequencing with a sample collected at Chuso-ri in Daechung Reservoir on March 15, 2005, The Shannon-Weiner diversity index was 0.65, indicating that the cyanobacterial community structure was simple. PCR-RFLP profiles obtained were Phormidium spp. (58 clones), Anabaena spp. (14 clones), Microcystis spp. (4 clones), Spirulina sp. (1 clone) and uncultured cyanobacteria (2 clones). The PCR-RFLP of cpcBA-IGS revealed that Phormidium spp. and Anabaena spp. dominated in the invested sample. As a consequence, it seems that the analysis of functional genes such as cpcBA-IGS can be used for the species identification and community analysis of cyanobacteria.

Analysis of Environmental Factors Associated with Cyanobacteria Dominance in Baekje Weir and Juksan Weir (백제보와 죽산보에서 남조류 우점 환경요인 분석)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyung-Seok;Cho, Young-Cheol;Lee, Hee-Suk;Park, Yeon-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.257-270
    • /
    • 2019
  • Followingthe Four Rivers Project, cyanobacterial blooms have been frequently observed in the upstream of the installed weirs. The aim of this study was to characterize the major environmental factors that are associated with the cyanobacteria dominance in Baekje Weir (Geum River) and Juksan Weir (Youngsan River) based on intensive experiments and systematic data mining methods. The factors related to the cyanobacteria dominance include7-days cumulative rainfall (APRCP7), 7-days averaged flow (Q7day), water temperature (Temp), stratification strength (${\Delta}T$), electronic conductivity (EC), DO, pH, $NO_3-N$, $NH_3-N$, TN, TP, $PO_4-P$, Chl-a, Fe, BOD, COD, TOC, and $SiO_2$. The most highly correlatedfactors to the dominant cyanobacteria were found to be EC, Temp, Q7day, $PO_4-P$ in theBaekje Weir. On the other hand, those dominant in the Juksan Weir were ${\Delta}T$, TOC, Temp, EC and TN. The EC showed a strong correlation with cyanobacteria dominance in both weirs because a high EC represents a persisted low flow condition. The cyanobacteria dominance was as high as 56 % when the EC was equal or greater than $418{\mu}S/cm$ in Baekje Weir. It was as high as 63% when the ${\Delta}T{\geq}2.1^{\circ}C$ in the Juksan Weir. However, nutrients showed a minor correlation with cyanobacteria dominance in both weirs. The results suggest that the cyanobacteria dominate in astate where the water flow rate is low, water temperature is high and thermal stratification is strengthened. Therefore, the improvement of flow regimes is the most important to prevent persistent thermal stratification and formation of cyanobacteria bloom in theBaekje and JuksanWeirs.

Efficient Extraction of Bioethanol from Freshwater Cyanobacteria Using Supercritical Fluid Pretreatment

  • Pyo, Dongjin;Kim, Taemin;Yoo, Jisun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.379-383
    • /
    • 2013
  • For the production of ethanol from freshwater cyanobacteria, a new pretreatment method using supercritical fluid was introduced. In this study, it was found that the supercritical fluid could penetrate inside the cell wall and help to liberate starch from cyanobacterial cells which resulted in the increase of the efficiency of ethanol production. For Microcystis aeruginosa, supercritical fluid pretreatment increased the amount of ethanol produced from cyanobacteria from 1.53 g/L to 2.66 g/L. For Anabaena variabilis, the amount of ethanol was increased from 1.25 g/L to 2.28 g/L. With use of supercritical fluid pretreatment, the efficiency of the process to obtain higher ethanol yields from freshwater cyanobacteria was improved upto 80%. The optimum temperature and pressure conditions for supercritical fluid pretreatment were determined as the temperature of $40^{\circ}C$ and the pressure of 120 atm. This study demonstrates the feasibility of using supercritical fluid pretreatment for ethanol production using freshwater cyanobacteria.

Characteristics of Cyanobacteria and Odorous Compounds Production in Lake Uiam and Lower Gonji Stream (의암호와 공지천 하류에서 남조류와 냄새물질의 발생 특징)

  • Youn, Seok Jea;Im, Jong Kwon;Byeon, Myeong-Seop;Yu, Soon Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.99-104
    • /
    • 2019
  • The objective of this study was to investigate the relationship between the biomass of cyanobacteria and the concentration of 2-methylisoborneol (2-MIB) in the lower Gongji stream. The investigation was done using a field study that was conducted from 2015 to 2017. The 2-MIB concentration in the lower Gongji stream ranged from 0 to 153 ng/L, while the upper stream had 0 2-MIB concentration. 3 genera (Oscillatoria, Phormidium, Pseudanabaena) of cyanobacteria were detected in the lower Gongji stream with 2-MIB concentration. Among these 3 genera, an increase in Phormidium, Pseudanabaena biomass was associated with an increase in 2-MIB concentration. Accordingly, Phormidium, Pseudanabaena were regarded as the biological source of 2-MIB in that area. In October 2017, although planktonic cyanobacteria occurred less frequently, many benthic cyanobacteria mats were observed on the surface of the water body. Therefore, the high 2-MIB concentration, which exceeded 110 ng/L, can likely be attributed to the benthic cyanobacteria. In a laboratory experiment, individual Oscillatoria filaments were aggregated to form a colony with a higher density. This colony tended to float on the water surface. Cyanobacteria mats after floating aggregated mats were distributed in a net shape on the bottom.