• Title/Summary/Keyword: cyclodextrin

Search Result 573, Processing Time 0.032 seconds

Antioxidant, anti-inflammatory, and antimicrobial activity of hesperetin and its cyclodextrin inclusion complexes (헤스페레틴(Hesperetin)과 사이클로덱스트린(Cyclodextrin) 포접 복합체의 항산화, 항염증, 항균 활성 )

  • Sung-Sook Choi;Kyung-Ae Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.988-1000
    • /
    • 2023
  • Hesperetin(HT) is a potent antioxidant flavonoid aglycone derived from hesperidin(HD). The antioxidant, anti-inflammatory, and antimicrobial activities of HT and its cyclodextrin(CD) inclusion complexes were compared in vitro. HT was prepared by enzymatic hydrolysis of HD, and HT/CD complexes were prepared using 𝛽-cyclodextrin(𝛽-CD) and hydroxypropyl-𝛽-cyclodextrin(HP-𝛽-CD) by solvent co-evaporation method. The solubility of the HT/HP-𝛽-CD inclusion complex increased 93.5-fold compared to HT, and the solubility of HT/𝛽-CD increased 22.5-fold. The HT/HP-𝛽-CD inclusion complex showed a similar effect as HT on radical scavenging activity in antioxidant assays, whereas the HT/𝛽-CD inclusion complex showed slightly lower activity than HT. Cytotoxicity was low in the following order; HT/HP-𝛽-CD, HT/𝛽-CD, and HT in murine macrophage RAW264.7 cells. Treatment with HT and HT/CD inclusion complexes reduced the levels of inflammatory mediators such as nitric oxide(NO), tumor necrosis factor-𝛼(TNF-𝛼) and interleukin-6(IL-6) in the cells. HT and HT/HP-𝛽-CD inclusion complex were more effective than HT/𝛽-CD inclusion complex at relatively low concentrations. Inhibitory effects were tested on skin-pathogenic bacteria, Staphylococcus aureus and Pseudomonas aeruginosa, and they showed an antimicrobial effect on S. aureus in the order of HT = HT/HP-𝛽-CD > HT/𝛽-CD, but they did not show any significant inhibitory effect on P. aeruginosa. In conclusion, HT, the aglycone form of HD, and its CD inclusion complexes showed various biological activities. HT/HP-𝛽-CD inclusion complex, which is the highly soluble form of HT, showed relatively higher activity compared to HT/𝛽-CD inclusion complex.

Cholesterol Contents of Pork Fed Dietary β-Cyclodextrin (BCD를 섭취한 돼지의 부위별 콜레스테롤 함량)

  • Kang, Hwan-Ku;Park, Byung-Sung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.2
    • /
    • pp.180-185
    • /
    • 2007
  • This study demonstrates that pork cholesterol levels are reduced in fattening stage swine fed $\beta-cyclodextrin({\beta}-cyclodextrin)$. The study subjects were 120 swine fed their respective chow diets containing 0, 5, 7, or 10% $\beta$-cyclodextrin for 35 consecutive days. Plasma total lipids, triglyceride and total cholesterol of the $\beta$-cyclodextrin treated group were significantly lower than those of the control group (p<0.05). The levels of plasma lipid were significantly decreased by 63.22 mg, 73.98 mg, and 82.12 mg in the fattening swine group fed $\beta$-cyclodextrin at 5%, 7%, and 10%, respectively, compared to those in the control group (p<0.05). When 5, 7, and 10% $\beta$-cyclodextrin was administered to fattening swine, the triacylglyceride levels were decreased by 56.24 mg, 55.48 mg, and 60.02 mg, and total cholesterol concentration was reduced by 25.05 mg, 27.17 mg, and 30.19 mg, respectively, compared to those in the control group (p<0.05). Excretion of total steroid significantly (p<0.05) increased with the increasing amount of $\beta$-cyclodextrin supplementation. The cholesterol levels of swine back fat, belly, loin, and ham were significantly decreased with increasing $\beta$-cyclodextrin supplementation (p<0.05). The pork cholesterol was significantly (p<0.05) reduced by 15.31% in the $\beta$-cyclodextrin treated group, compared to that of the control group. These results suggest that feeding $\beta$-cyclodextrin to fattening swine may produce novel functional pork with low cholesterol levels.

Recycling of $\beta$-Cyclodextrin Used for Cholesterol Removal from Egg Yolk (난황의 콜레스테롤 제거에 사용한 $\beta$-Cyclodextrin의 재활용)

  • 유익종;최성유;박우문;전기홍
    • Food Science of Animal Resources
    • /
    • v.20 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The method used to remove cholesterol from egg by using $beta$-cyclodextrin was relatively stable and efficient. The aim of this study was to cost down by recycling $\beta$-cyclodextrin used to remove cholesterol from egg yolk because $\beta$-cyclodextrin was expensive. The solvents used to separate $\beta$-cyclodextrin from $\beta$-cyclodextrin complex containing egg yolk cholesterol were butanol, chloroform, ether, hexane, methanol, 2-propanol and their mixture. The ratio of solvent and complex varied from 2 : 1 to 10 : 1. The condition of mixing time and temperature varied from 30 to 60$^{\circ}C$ and from 10 minutes to 3 hours to remove cholesterol from $\beta$-cyclodextrin complex. When the ratio of choloroform and methanol was 1 : 1, the removal efficiency of cholesterol was 98.8%. The efficiency of cholesterol removal was improved when the ratio of solvent : complex increased to 4 : 1. When mixing time and temperature was up to for 1hr, at 50$^{\circ}C$ respectively, the efficiency of cholesterol removal improved to 99%. It concluded that the efficiency of cholesterol removal of 50% renewed one contained $\beta$-cyclodextrin were 81.1% while the cholesterol removal efficiency of 100% renewed $\beta$-cyclodextrin was 24% if cholesterol removal efficiency of new $\beta$-cyclodextrin were 100%.

  • PDF

Purification and Characterization of Cyclodextrin Glucanotransferase from Bacillus sp. El (Bacillus sp. E1이 생성하는 Cyclodextrin Glucanotransferase의 정제 및 특성)

  • Park, Cheon-Seok;Woo, Eui-Jeon;Kuk, Seung-Uk;Seo, Byung-Cheol;Park, Kwan-Hwa;Lim, Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.156-163
    • /
    • 1992
  • Bacillus sp. was isolated from soil for its strong activity of cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19). The enzyme was purified by gel filtration and anion exchange column chromatography using FPLC. The purified enzyme exhibited its maximum CGTase activity in the pH range of 6~8 and the temperature range of 50~$70^{\circ}C$. The molecular weight was estimated as 114,000 by SDS-PAGE. The isoelectric point of the enzyme was 4.3. The CGTase of Bacillus sp. E l produced $\beta$-cyclodextrin mainly and did not produce a-cyclodextrin. The product ratio of $\beta$-cyclodextrin to $\gamma$-cyclodextrin was 7:l.

  • PDF

Utilization of Cyclodextrin in Biotransformation by Digitalis lanata Cell Cultures (Digitalis lanata 세포배양에 의한 생물학적 변환에서의 cyclodextrin의 이용)

  • 이종은;최연숙;안지은;김동일
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.352-356
    • /
    • 1998
  • Addition of cyclodextrin in the biotransformation of digitoxin into digoxin by Digitalis lanata cell suspension cultures enhanced the conversion yield. Presence of cyclodextrin also supported good stability of the intermediate product, digoxin, for long time. Among several kinds of cyclodextrins, ${\beta}$-cyclodextrin provided the best results. It was found that the optimum form of cyclodextrin utilization was the external addition of iclusion complexes between digitoxin and ${\beta}$-cyclodextrin at 1: 2 molar ratio from the beginning of biotransformation. With the optimized conditions, addition of ${\beta}$-cyclodextrin enhanced the production of digoxin up to 1.55 fold. In this case, not only digitoxin consumption was increased, but also the production of by-product was reduced.

  • PDF

Production Enhancement of Benzophenanthridine alkaloids in the Suspension Cultures of California poppy using Cyclodextrin (양귀비 세포 현탁배양계에서 Cyclodextrin을 이용한 Benzophenanthridine alkaloids의 생산성 증대)

  • 박세춘;조규헌
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • In this research, an extractive production system for alkaloids, where production and some degree of separation occur simultaneously, was developed in a way that the fast removal of alkaloid produced from the suspension cultures was done by capturing alkaloid with cyclodextrins. The alkaloid production was substantially enhanced up to 40 fold when the solid cultures of E. califonica cells treated with ${\beta}$-cyclodextrin compared to the control. The enhancement of alkaloid production was also observed in the suspension cultures. Interestingly, the production pattern seemed to change when the cultures were treated with ${\beta}$-cyclodextrin so that the major part of the alkaloids in the treated cultures was present in the medium, while the non-treated cultures produced the alkaloids intracellularly. ${\beta}$-cyclodextrin was the most effective one in terms of the alkaloid production among the cyclodextrilns(${\alpha}$-cylodextrin, ${\beta}$-cyclodextrin and ${\gamma}$-cyclodextrin) tested in the suspension cultures. ${\beta}$-cyclodextrin showed no adverse effect on the cell growth. The most effective concentration of ${\beta}$-cyclodextrin was observed around 1.5% (w/v) in the suspension cultures. The formation of the inclusion complex of the alkaloids with ${\beta}$-cyclodextrin in the suspension cultures was confirmed by detecting the shift of UV absorbance from 274 nm to 282 nm with a UV spectrophotometer.

  • PDF

Interaction of Beta-cyclodextrin with Some Pharmaceuticals (Beta-cyclodextrin과 의약품(醫藥品)과의 상호작용(相互作用))

  • Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.4 no.1_2
    • /
    • pp.13-18
    • /
    • 1974
  • Data are present for the interaction of beta-cyclodextrin with 7 pharmaceuticals in aqueous solution. By means of the solubility method of analysis, definite interaction were found to occur with all the compounds tested. The amount of these pharmaceuticals in equilibrium with their respective solid phase increased progressively with beta-cyclodextrin. A concentration of 1.5 g of beta-cyclodextrin per 100 ml of water increased the solubility of most compounds tested (except one) by 15-120%. Hydrolysis in alkali solution of chrolothiazide was retarded in the presence of beta-cyclodextrin.

  • PDF

Production Enhancement of Menthol in Suspension Cultures of Peppermint Using Cyclodextrin (Peppermint 세포 현탁배양에서 Cyclodextrin을 이용한 Menthol의 생산성 증대)

  • 조규헌;임철호;박세춘;신명근
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.26-30
    • /
    • 1998
  • The suspension cultures of Mentha piperita produce menthol which has very low solubility in water due to its hydrophobicity. This can be considered as a factor for its low production in the suspension suspension cultures. Cyclodextrin has the hydrophobic cavity inside the molecule in which menthol can be captured and allow to form a stable complex. The suspension culture of Mentha piperita showed 70% higher production enhancement in the medium containing 1.5%(w/v) $\beta$-cyclodextrin than the control. $\beta$-cyclodextrin had no adverse effect on the cell growth and showed the best result among $\alpha$-, $\beta$- and $\gamma$-cyclodextrins tested in terms of menthol production. We demonstrated that $\beta$-cyclodextrin can be used to enhance the production of menthol in the suspension cultures by capturing hydrophobic menthol into the cavity of cyclodextrin molecules.

  • PDF

Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex

  • Farahat, Mohamed G.
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Edible films containing antimicrobial agents can be used as safe alternatives to preserve food products. Essential oils are well-recognized antimicrobials. However, their low water solubility, volatility and high sensitivity to oxygen and light limit their application in food preservation. These limitations could be overcome by embedding these essential oils in complexed product matrices exploiting the encapsulation efficiency of β-cyclodextrin. This study focused on the maximization of β-cyclodextrin production using cyclodextrin glucanotransferase (CGTase) and the evaluation of its encapsulation efficacy to fabricate edible antimicrobial films. Response surface methodology (RSM) was used to optimize CGTase production by Brevibacillus brevis AMI-2 isolated from mangrove sediments. This enzyme was partially purified using a starch adsorption method and entrapped in calcium alginate. Cyclodextrin produced by the immobilized enzyme was then confirmed using high performance thin layer chromatography, and its encapsulation efficiency was investigated. The clove oil/β-cyclodextrin inclusion complexes were prepared using the coprecipitation method, and incorporated into chitosan films, and subjected to antimicrobial testing. Results revealed that β-cyclodextrin was produced as a major product of the enzymatic reaction. In addition, the incorporation of clove oil/β-cyclodextrin inclusion complexes significantly increased the antimicrobial activity of chitosan films against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella Typhimurium, Escherichia coli, and Candida albicans. In conclusion, B. brevis AMI-2 is a promising source for CGTase to synthesize β-cyclodextrin with considerable encapsulation efficiency. Further, the obtained results suggest that chitosan films containing clove oils encapsulated in β-cyclodextrin could serve as edible antimicrobial food-packaging materials to combat microbial contamination.

Purification and Characterization of Cyclodextrin Glycosyltransferase from Bacillus brevis CD162 (Bacillus brevis CD162 Cyclodextrin Glycosyltransferase의 정제 및 특성)

  • Kim, Myung-Hee;Lim, Young-Hee;Oh, Tae-Kwang;Sohn, Cheon-Bae
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.465-471
    • /
    • 1997
  • The cyclodextrin glycosyltransferase (CGTase, EC 3.2.1.19) from Bacillus brevis CD162 was purified by precipitating with ammonium sulfate, DEAE-Sepharose CL-6B column chromatography and Sephadex G-150 column chromatography. The molecular mass and pI of the purified enzyme were estimated to be 74,000 and 6.3 by SDS-PAGE and isoelectric focusing, respectively. The purified enzyme was clearly identified as the CGTase by zymogram after SDS-PAGE. The optimum pH and temperature for the enzyme activity were 8.0 and $55^{\circ}C$, respectively. The enzyme was stable at the range of pH $5.5{\sim}9.0$, and up to $50^{\circ}C$. The amino acid sequence from the $NH_2-terminal$ of the purified CGTase was Ser-Val-Thr-Asn-Lys-Val-Asn-Tyr-Ser-Lys-Asp-Val-Ile-Tyr-Gln. The yields of the products from starch as the substrate were 1.3% for ${\alpha}-$, 33.9% for ${\beta}-$, and 9.7% for ${\gamma}-cyclodextrin$.

  • PDF