• Title/Summary/Keyword: cylinder width

Search Result 139, Processing Time 0.031 seconds

Analysis on Vortex Streets Behind a Square Cylinder at High Reynolds Number Using a Large-Eddy Simulation Model: Effects of Wind Direction, Speed, and Cylinder Width (큰에디모의 모형을 이용한 높은 레이놀즈 수에서의 사각 기둥 후면의 와열 분석: 풍향과 풍속, 기둥 너비의 영향)

  • Han, Beom-Soon;Kwak, Kyung-Hwan;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.445-453
    • /
    • 2017
  • This study investigates turbulent flow around a square cylinder mounted on a flat surface at high Reynolds number using a large-eddy simulation (LES) model, particularly focusing on vortex streets behind the square cylinder. Total 9 simulation cases with different inflow wind directions, inflow wind speeds, and cylinder widths in the x- and y-directions are considered to examine the effects of inflow wind direction, speed, and cylinder widths on turbulent flow and vortex streets. In the control case, the inflow wind parallel to the x-direction has a maximum speed of $5m\;s^{-1}$ and the width and height of the cylinder are 50 m and 200 m, respectively. In all cases, down-drafts in front of the cylinder and updrafts, wakes, and vortex streets behind the cylinder appear. Low-speed flow below the cylinder height and high-speed flow above it are mixed behind the cylinder, resulting in strong negative vertical turbulent momentum flux at the boundary. Accordingly, the magnitude of the vertical turbulent momentum flux is the largest near the cylinder top. In the case of an inflow wind direction of $45^{\circ}$, the height of the boundary is lower than in other cases. As the inflow wind speed increases, the magnitude of the peak in the vertical profile of mean turbulent momentum flux increases due to the increase in speed difference between the low-speed and high-speed flows. As the cylinder width in the y-direction increases, the height of the boundary increases due to the enhanced updrafts near the top of the cylinder. In addition, the magnitude of the peak of the mean turbulent momentum flux increases because the low-speed flow region expands. Spectral analysis shows that the non-dimensional vortex generation frequency in the control case is 0.2 and that the cylinder width in the y-direction and the inflow wind direction affect the non-dimensional vortex generation frequency. The non-dimensional vortex generation frequency increases as the projected width of the cylinder normal to the inflow direction increases.

Development of Stroke Sensing Cylinder Using Magnetic Sensor and Its Performance Estimation (자기 센서를 이용한 스트로크 센싱 실린더의 개발 및 성능평가)

  • 홍영호;이민철;이만형;양순용;진영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.278-282
    • /
    • 1995
  • We developed a part of storke sensing cylinder using magnetic sensor and estimated is performance. In this paper, for the performance estimation of stroke sensing cylinder. We consist of hydrallic system using solenoid valve with ON/OFF motion. In order to the control of solenoid valve for the position control of cylinder rod, PWM (Pulse Width Modulation) method which modulates time pulse width in proportion to error was used. A performance of cylinder rod with magnetic scales was evaluated by its hydraulic system.

  • PDF

A Numerical Study on Flow Characteristics Around Rectangular Cylinder with Different Width-to-height Ratios (종횡비 변화에 따른 사각실린더 주위의 유동 특성에 관한 수치적 연구)

  • Park, Yong-Gap;Son, Chang-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.523-529
    • /
    • 2010
  • We investigate two-dimensional laminar flow around rectangular cylinders placed in a uniform stream. Numerical simulations are performed, using finite volume method, in the ranges of $50{\leq}Re{\leq}150$ and $0.1{\leq}W/H{\leq}1.0$, where Re and W/H are the Reynolds number and the width-to-height ratio, respectively. The immersed boundary method is used to handle the rectangular cylinder in a rectangular grid system. Comparisons with the previous results show good agreement in Strouhal number, drag and lift coefficient. The present study reports the detailed information of flow structure at different width-to-height ratios in the ranges of $50{\leq}Re{\leq}150$.

FINITE ELEMENT MODELING AND PARAMETER STUDY OF HALF-BEAD OF MLS CYLINDER HEAD GASKET

  • CHO S. S.;HAN B. K.;LEE J. H.;CHANG H.;KIM B. K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.109-114
    • /
    • 2006
  • Half-beads of multi-layer-steel cylinder head gaskets take charge of sealing of lubrication oil and coolant between the cylinder head and the block. Since the head lifts off periodically due to the combustion gas pressure, both the dynamic sealing performance and the fatigue durability are essential for the gasket. A finite element model of the halfbead has been developed and verified with experimental data. The half-bead forming process was included in the model to consider the residual stress effects. The model is employed to assess the dependence of the sealing performance and the fatigue durability on the design parameters of half-bead such as the width and height of bead and the flat region length. The assessment results show that the sealing performance can be enhanced without significant deterioration of the fatigue durability in a certain range of the half-bead width. In the other cases the improvement of sealing performance is accompanied by the loss of the fatigue durability. Among three parameters, the bead width has the strongest influence.

An experimental Study of the Wake Flow Past a Rectangular Cylinder (長方形柱 後流에 關한 實驗的 硏究)

  • Nam, Cheong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.45-56
    • /
    • 1991
  • This paper describes characteristics of the flow pattern of the flow past a rectangular cylinder experimentally investigated. The width-to-length ratio of the section varried from 2 to4. For the statistical treatment, autocorrelation coefficient, probability density function and power spectral density function are obtained by the digital processing technic through on-line system with a hot wire anemometer. As a results, it was found that strong periodic coherent eddies structure is sustained to about 20H downstream from the cylinder. And nearer the cylinder in the wake, the number of turbulent eddies of a large scale coherent structure are comparatively much more dominant than that of a small scale one. By the analysis of power spectrum, It was cleared that there exists a certain range of the width to length ratio between 2.5 and 3 of which the flow pattern changes abruptly with a sudden discontinuity in Strouhal number.

  • PDF

Effects on the Gamma Rays Scattered Backward by the Gold Cylinder on the Nuclear Energy Level (실린더 금속판에 의해 뒤쪽산란된 감마선이 핵에너지 준위에 미치는 효과)

  • Jeong, M.T.;Chol, N.G.;Cheoun, M.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.103-107
    • /
    • 2007
  • When the gamma-ray source, $^{133}Cs$, embedded in a solid is placed at the center of a gold cylinder, the width of 81 keV level is shown to become narrower. This result implies a prolongation of the lifetime of that energy level. With a 0.5-mm-thick, 5-cm-long, 2-mm-diameter platinum cylinder, we obtain a width narrower by 6.1 % at 4.2 K.

In-cylinder Spray Flow Characteristics in Direct-injection Gasoline Engine (직접 분사식 가솔린 엔진의 실린더 내 분무 유동 특성에 관한 연구)

  • 김진수;전문수;윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.51-59
    • /
    • 2000
  • In-cylinder spray flow motion plays an important in the adjustment of mixture preparation with a fundamental spray characteristics and in-cylinder flow field well in direct-injection gasoline engine. In this study, the fundamental spray characteristics such as mean drop size, velocity distribution, spray angle were measured and in-cylinder spray flow motion was visualized in order to optimize intake port, piston top land and combustion chamber shapes in the development stage of mass-produced G야 engine. For these experiments, the PDPA measurements and Mie scattering technique were used for detailed spray characteristics and in-cylinder spray motions were obtained by use of ICCD camera through the single-cylinder optical engine. From the experimental results, the test injector shows a good low-end linearity between the dynamic flow and fuel injection pulse width and the fuel spray of 20mm or less in SMD with good spray symmetry. In addition, the in-cylinder tumble flow has more effect on the homogeneous mixture formation than that of in-cylinder swirl flow at early injection mode and the in-cylinder swirl flow plays a better role of stratified mixture preparation than tumble flow at late injection mode.

  • PDF

Flow Structure of the Wake behind an Elliptic Cylinder Close to a Free Surface

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1784-1793
    • /
    • 2001
  • The flow fields around an elliptic cylinder of axis ratio AR=2 adjacent to a free surface were investigated experimentally using a water channel. The main objective is to understand the effect of the free surface on the flow structure in the near-wake. The flow fields were measured by varying the depth of cylinder submergence, for each experimental condition, 350 velocity fields were measured using a single-frame PIV system and ensemble-averaged to obtain the spatial distribution of turbulent statics. For small submergence depths a large-scale eddy structure was observed in the near-wake, causing a reverse flow near the free surface, downstream of the cylinder. As the depth of cylinder submergence was increased, the flow speed in the gap region between the upper surface of the cylinder and the free surface increased and formed a substantial jet flow. The general flow structure of the elliptic cylinder is similar to previous results for a circular cylinder submerged near to a free surface. However, the width of the wake and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder are smaller tan those for a circular cylinder.

  • PDF

Effects of the Bead Shape on the Nonlinear Behavior of Cylinder Head Gasket (비드 형상에 따른 실린더 헤드 가스켓의 비선형 거동 특성)

  • Byun, Chul-Jin;Yoo, Seung-Hyun;Yoon, Cheon-Han;Park, Jong-Kuk
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.321-325
    • /
    • 2000
  • Gasket of vehicle engine maintains airtight between cylinder head and engine block under high temperature and pressure, and plays important role in heat conduction of engine. And the characterization of the nonlinear behavior of metal gasket fer various bead shapes is very important as basic research for estimation of gasket durability. But it is very difficult to analyze the behavior of gasket In real experiment. In this paper, to analysis effects of the bead shape on the nonlinear behavior of cylinder head gasket under uniform pressure, the virtual experiment using the nonlinear finite element method was performed. Results are analyzed with residual deformation and the sealing pressure. With the increase of the height and the width of bead, the residual deformation and the sealing pressure increase. And if the height is very high and the width is very narrow, the wrinkles are occurred in the gasket while working.

  • PDF

Drag and Lift Forces of a Circular Cylinder Located Parallel to a Planar Jet (평면 제트내의 평행하게 놓인 원형 실린더가 받는 항력과 양력)

  • Gang, Sin-Hyeong;Hong, Sun-Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.369-376
    • /
    • 1996
  • Variations of the drag and lift forces of a circular cylinder in a planar turbulent jet were experimentally investigated. The force was directly measured using the load cell and estimated by integrating the pressure distribution on the cylinder. As the cylinder moves outward from the center of the jet, the direction of lift force changes and the drag force decreases. Reynolds number, the ratio of cylinder's diameter to half width of jet had effect on maximum drag coefficient and the location where the direction of lift changes.