• Title/Summary/Keyword: cylindrical-human model

Search Result 16, Processing Time 0.023 seconds

Reduction of specific absorption rate(SAR) in multiple cylindrical-human models (복수 원통형 인체모델에서의 흡수전력 저감)

  • Yang, Jun-Won;Kim, Hyung-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.271-276
    • /
    • 2012
  • As applications of electromagnetic waves increase, biological effects caused by the EM waves are worried about. Many studies about the biological effects are reported. However, there are only a few reports on protection against the EM waves. The protection should be considered for the researchers who use strong EM waves in their experiments. In this paper, a method of reducing SAR in a cylindrical human model by a shield plate is proposed for RF engineers exposed to strong electromagnetic waves. The shield plate modeled as an arc structure is shown effectively to protect the cylindrical human model from the exposed field.

Facial Texture Generation using an Image Registration Algorithm based on Ellipsoidal Prototype Model (타원체형 모델 기반의 영상정렬 알고리즘을 이용한 얼굴 텍스쳐 생성)

  • Lee Joong Jae;Noh Myung Woo;Choi Hyung Il
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.1
    • /
    • pp.22-33
    • /
    • 2005
  • In this paper. we propose an image registration algorithm based on variable-sized blocks of ellipsoidal prototype model which is similar in shape to human face. While matching blocks, the existing cylindrical prototype model which only takes into account left and right curvature can accomplish a correct alignment on left and right images. But, registration errors are produced from up and down images because the cylindrical prototype model not reflects characteristics of head shape and jaw structure of human. The proposed method is a block matching algorithm which uses variable-sized blocks with considering left-right and up-down curvature of ellipsoidal face model and can correctly align images by using the correlation between them. We then adapt image mosaic technique to generate a face texture from aligned images. For this purpose, we stitch them with assigning linear weights according to the overlapped region and remove ghost effects to make more realistic facial texture.

Artificial intelligence as an aid to predict the motion problem in sport

  • Yongyong Wang;Qixia Jia;Tingting Deng;H. Elhosiny Ali
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.111-126
    • /
    • 2023
  • Highly reliable and versatile methods artificial intelligence (AI) have found multiple application in the different fields of science, engineering and health care system. In the present study, we aim to utilize AI method to investigated vibrations in the human leg bone. In this regard, the bone geometry is simplified as a thick cylindrical shell structure. The deep neural network (DNN) is selected for prediction of natural frequency and critical buckling load of the bone cylindrical model. Training of the network is conducted with results of the numerical solution of the governing equations of the bone structure. A suitable optimization algorithm is selected for minimizing the loss function of the DNN. Generalized differential quadrature method (GDQM), and Hamilton's principle are used for solving and obtaining the governing equations of the system. As well as this, in the results section, with the aid of AI some predictions for improving the behaviors of the various sport systems will be given in detail.

Research on an Equivalent Antenna Model for Induced Human Body Current by RFID Equipments (RFID 장비에 의한 인체 유도 전류의 등가 안테나 모형 연구)

  • Lee, Jong-Gun;Byun, Jin-Kyu;Choi, Hyung-Do;Cheon, Chang-Yul;Lee, Byung-Je;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.727-732
    • /
    • 2008
  • Recently, according to the increase of using the microwave equipments, the interests in effects on human body have been also increased. For example, there have been many researches on making the standard the specific absorbing ratio (SAR) caused by mobile phones. However, it is needed to study on the induced current on human body caused by HF(Hight Frequency) band which can deeply penetrate the human body. Especially, since the RFID systems are applied to the transportation card and the library, it is hooded to research on the effect on human body exposed to the radiated power from the RFID system. In this paper, we designed a cylindrical monopole antenna model of human body exposed to 13.56 MHz RFID system, which can model the induced current on human body. To verify the proposed equivalent antenna model, we compared the induced currents between human body and the equivalent antenna model.

Measurements of 3D Model Shapes for Reverse Designs (역설계를 위한 3차원 모델형상 측정)

  • Doh, Deog-Hee;Cho, Kyeong-Rae;Cho, Yong-Beom
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.55-59
    • /
    • 2012
  • Reverse Design(RD) plays an important role in simulation engineering, such as CFD (Computational Fluid Dynamics) and Virtual Engineering and Design. RD becomes much more valuable when there is no shape data of the practical models for CFD grid generations. In this study, two-camera based rapid prototyping(RP) system is proposed. 3D-PTV based measurement algorithm was adopted. The developed system was applied to reconstruct three-dimensional data of a human face, a motorcycle model, a cylindrical body and a triangular pyramid.

Image-based Realistic Facial Expression Animation

  • Yang, Hyun-S.;Han, Tae-Woo;Lee, Ju-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.133-140
    • /
    • 1999
  • In this paper, we propose a method of image-based three-dimensional modeling for realistic facial expression. In the proposed method, real human facial images are used to deform a generic three-dimensional mesh model and the deformed model is animated to generate facial expression animation. First, we take several pictures of the same person from several view angles. Then we project a three-dimensional face model onto the plane of each facial image and match the projected model with each image. The results are combined to generate a deformed three-dimensional model. We use the feature-based image metamorphosis to match the projected models with images. We then create a synthetic image from the two-dimensional images of a specific person's face. This synthetic image is texture-mapped to the cylindrical projection of the three-dimensional model. We also propose a muscle-based animation technique to generate realistic facial expression animations. This method facilitates the control of the animation. lastly, we show the animation results of the six represenative facial expressions.

The Comparison with SAR Patterns of Biological Objects Contacted with Coaxial Waveguide Antenna Using the FDTD Method

  • Koo, S.M.;Kwon, K.H.;Lee, C.W.;Won, C.H.;Kim, M.N.;Cho, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.272-275
    • /
    • 1997
  • Noninvasive multifrequency microwave radiometry using coaxial waveguide antenna has been investigated for a homogeneous and our layer human body model. We derived finite-difference time-domain(FDTD) algorithm and equation of MUR and generalized perfectly matched layer(GPML) absorbing boundary conditions(ABCs) in cylindrical coordination. The coupling between coaxial waveguide antenna and a biological object was analyzed by use of the FDTD method using MUR and GPML ABCs to obtain the absorbed power patterns in the media. The specific absorption rates(SAR) distribution which was corresponding to the temperature distribution was calculated in each region by use of the steady-state response in FDTD method. The SAR patterns of FDTD method using MUR ABCs was compared with those of FDTD method using GPML ABCs.

  • PDF

Application of artificial intelligence for solving the engineering problems

  • Xiaofei Liu;Xiaoli Wang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.15-27
    • /
    • 2023
  • Using artificial intelligence and internet of things methods in engineering and industrial problems has become a widespread method in recent years. The low computational costs and high accuracy without the need to engage human resources in comparison to engineering demands are the main advantages of artificial intelligence. In the present paper, a deep neural network (DNN) with a specific method of optimization is utilize to predict fundamental natural frequency of a cylindrical structure. To provide data for training the DNN, a detailed numerical analysis is presented with the aid of functionally modified couple stress theory (FMCS) and first-order shear deformation theory (FSDT). The governing equations obtained using Hamilton's principle, are further solved engaging generalized differential quadrature method. The results of the numerical solution are utilized to train and test the DNN model. The results are validated at the first step and a comprehensive parametric results are presented thereafter. The results show the high accuracy of the DNN results and effects of different geometrical, modeling and material parameters in the natural frequencies of the structure.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

A finite element analysis of a new design of a biomimetic shape memory alloy artificial muscle

  • Jaber, Moez Ben;Trojette, Mohamed A.;Najar, Fehmi
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.479-496
    • /
    • 2015
  • In this work, a novel artificial circular muscle based on shape memory alloy (S.M.A.) is proposed. The design is inspired from the natural circular muscles found in certain organs of the human body such as the small intestine. The heating of the prestrained SMA artificial muscle will induce its contraction. In order to measure the mechanical work provided in this case, the muscle will be mounted on a silicone rubber cylindrical tube prior to heating. After cooling, the reaction of the rubber tube will involve the return of the muscle to its prestrained state. A finite element model of the new SMA artificial muscle was built using the software "ABAQUS". The SMA thermomechanical behavior law was implemented using the user subroutine "UMAT". The numerical results of the finite element analysis of the SMA muscle are presented to shown that the proposed design is able to mimic the behavior of a natural circular muscle.