• Title/Summary/Keyword: cytochrome P-4502E

Search Result 17, Processing Time 0.051 seconds

Pathological Changes in Rats Fed petasites japonicus Maxim II. Immunohistochemical Localization of Cytochrome P4502E1 and GST-P in Liver

  • Jee, Young-Heun;Lee, Cha-Soo;Jeong, Kyu-Shik
    • Korean Journal of Veterinary Pathology
    • /
    • v.1 no.1
    • /
    • pp.33-39
    • /
    • 1997
  • We investigated metabolism and carcinogenesis in livers of Sprague-Dawley rats fed juices and pelleted diets containing Korean native plants petasites japonicus Maxim by evaluating cell localization and expression of cytochrome P450s and GST-P. Anti-cytochrome P450s application in liver sections revealed three to four times increased expression of cytochrome P450E1 immunoreactivity in degenerative hepatocytes when compared to histologically normal hepatocytes. Anti-GST-P in showed positive pren plastic foci as well as in individual hepatocytes randomly scattered throughout all liver sections examined. Additionally GST-P was evident in proliferative endothelial cells and biliary epithelial cells in exposed rat livers. These results suggested that the increased level of cytochrome P4502E1 in affected hepatocytes was a direct consequence of Petasites japonicus toxicity. Further immunoreactivity to anti-GST-P in hepatocytes endothelial cells and biliary epithelial cells indicated a possible preneoplastic effects of Petasites japonicus in Sprague-Dawley rat.

  • PDF

Induction of Hepatic Microsomal Cytochrome P450 by N,N-dimethylformamide in Sprague-Dawley Rats (흰쥐에서 N,N-dimethylformamide에 의한 간장의 Microsomal Cytochrome P450의 유도)

  • Koh, Sang-Baek;Cha, Bong-Suk;Kang, Seung-Kyu;Joung, Hyo-Seok;Kim, Ki-Woong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.1
    • /
    • pp.88-94
    • /
    • 1999
  • Objectives. In order to gain a better understanding of the mechanism of DMF toxicity, recent studies have focused on hepatic drug metabolizing enzymes. In this study, we investigated the effects of DMF on the induction of P450 and the activities of other related enzymes in rat liver microsomes. Methods. DMF was administered to male Sprague Daweley rats by intraperitoneal injection at 0(control), 450(D1), 900(D2), 1,800(D3) mg DMF/kg body weight in olive oil once a day for three days. Hepatic P450 was measured by method of Omura and Sato. We evaluated selective assays for the three drug metabolizing cytochrome P450 isoenzymes 1A1, 2B1 and 2E1. Results. The content of microsomal protein, P450 and b5 were tended to be decreased in DMF treated group, but they were not statistically significant. The activity of NADPH-cytochrome P450 reductase was significantly increased dose dependently(p<0.01), but the activity of NADH-b5 reductase was decreased in the treated group(p<0.01). The activities of PROD and EROD were not significant between control and treated group. The activities of pNPH in the DMF treated groups were higher than that of the control group(p<0.01). When Western immunoblottings were carried out utilizing three monoclonal antibodies which were specific against P4501A1/1, P4502B1/2 and P4502E1, the strong density band corresponding to P4502E1 was observed with the microsomes obtained from the rats treated with DMF. But there were no significant increased in the P4501A1/2 and P4502B1/2 band densities in immunoblotting. Conclusions. These result suggested that P4502E1 was inducible by DMF and P4502E1 isozyme might be responsible for the hydroxylation of DMF to HMMF.

  • PDF

Effect of Trichloroethylene on the Induction of Rat Liver Microsomal Enzymes

  • Chang, Sung-Keun;Jeong, Hyo-Seok;Chai, Se-Ok;Kim, Ki-Woong;Park, Sang-Shin
    • BMB Reports
    • /
    • v.30 no.4
    • /
    • pp.237-239
    • /
    • 1997
  • The effects of trichloroethylene (TRI) on the induction of cytochrome P-450 (CYP) and several other related enzymes in Sprague Dawley rats were investigated Rats were treated with TRI 150. 300. 600 mg/kg body weight in corn oil intra peritoneally once a day for 2 days. The total contents of microsomal CYP and cytochrome $b_5\;(b_5)$ decreased with the increase of TRI concentration. but the activity of p-nitrophenol hydroxylase increased with the increase of TRI dosage (p<0.05). Western blot analysis which utilized monoclonal antibodies against CYP2E1 also showed a significant increase in the CYP2E band density. The increase of the activity of pentoxyresolufin-O-deethylase also was observed with the TRI treatment (p<0.05) although there was no significant increase in the cytochrome CYP2B1/2 in Western blotting The TRI did not affect the induction of aryl hydrocarbon hydroxylase. These findings suggest that the CYP2E1 is the primary enzyme which could be induced by TRI treatment in rats.

  • PDF

Search for acetaldehyde trapping agents by using alcohol dehydrogenase assay

  • Lee, Hyun-Joo;Lee, Kang-Man
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.160.3-161
    • /
    • 2003
  • Aldehyde and active form of free oxygen produced in alcohol metabolism in liver are the cause of liver cell damage. The main system of alcohol metabolism is composed of alcohol dehydrogenase(ADH), aldehyde dehydrogenase(ALDH) and cytochrome P4502E1. Alcohol dehydrogenase is reversible in alcohol metabolism. To block the backward reaction and enhance alcohol oxidation, acetaldehyde trapping agents were assayed. The assay was carried out by measuring decreasing NADH at 340nm, using acetaldcehyde and NADH as substrate and coenzyme respectively. (omitted)

  • PDF

Influences of CYP2E1 Gene Polymorphism on the Metabolism of Benzene (벤젠 대사에 있어서 CYP2E1유전자다형성의 영향)

  • 정효석;김기웅;장성근
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.325-330
    • /
    • 2002
  • In this study, the biochemical role of genetic polymorphism in modulating urinary excretion of benzene metabolite as phenol level has been investigated in 90 workers exposed to benzene in the petroleum refinery plant of Korea. The mean concentration of volatile benzene in the refinery environment was 0.042 mg/㎥ (SD, 0.069) and that of urinary phenol was 7.42 mg/g creatinine (SD, 11.3). The frequencies of CYP2E1 genotypes, namely CYP2E1$^*1$/$^*1$, CYP2E1$^*1$/$^*2$ and CYP2E1$^*2$/$^*2$ were 2.2% (2 subjects), 6.7% (G subjects) and 91.1% (85 subjects), respectively, and allele frequencies for CYP2E1$^*1$ and CYP2E1$^*2$ were 0.06 and 0.94. The airborne benzene concentration was significantly related to the concentration of phenol in urine (r = 0.640, p < 0.01). The urinary phenol level was significantly correlated with CYP2E1$^*2$/$^*2$ (r = 0.590, p < 0.05). The various biological (i.e. age and liver function parameters) or lifestyle factors (i.e. medication, smoking, alcohol and coffee intake), also taken into account as potential confounders, did not influence the correlation found. These results suggested that CYP2E1 genotypes might play an important role in the metabolism of benzene.

Effect of Angelica keiskei Koidzumi Extract on Alcohol-Induced Hepatotoxicity In Vitro and In Vivo (In Vitro 및 In Vivo 알코올 유도 간 손상에 대한 신선초 추출물의 효과)

  • Lee, Jeong Yoon;An, Yeon Ju;Kim, Ji Won;Choi, Hyo-Kyoung;Lee, Yoo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1391-1397
    • /
    • 2016
  • We investigated the hepatoprotective effects of Angelica keiskei Koidzumi extract (AK) in HepG2-overexpressing cytochrome P4502E1 (CYP2E1) and C57BL/6J mice. In HepG2 cells expressing CYP2E1, cell viability and catalase activity in the ethanol-AK co-treated group significantly increased compared to those in the ethanol-treated group. In the in vivo study with C57BL/6J mice, the AK-supplemented group with ethanol liquid diet showed significantly reduced hepatic markers, including serum aspartate aminotransferase, alanine aminotransferase, and ${\gamma}$-glutamyl transferase, compared to the ethanol group without AK supplementation. AK supplementation (20 mg/kg BW/d) also significantly attenuated reactive oxygen species generation and malondialdehyde level. Notably, a low dose of AK supplementation (20 mg/kg BW/d) suppressed expression of hepatic CYP2E1 and inhibited CYP2E1 enzyme activity. These data indicate that a low dose of AK supplementation could restrain alcohol-induced hepatic damage mediated by CYP2E1.

Gender Differences in Activity and Induction of Hepatic Microsomal Cytochrome P-450 by 1-Bromopropane in Sprague-Dawley Rats

  • Kim, Ki-Woong;Kim, Hyeon-Yong;Park, Sang-Shin;Jeong, Hyo-Seok;Park, Sang-Hoi;Lee, Jun-Yeon;Jeong, Jae-Hwang;Moon, Young-Hahn
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.232-238
    • /
    • 1999
  • Sex differences in the induction of microsomal cytochrome P-450 (CYP) and the activities of several related enzymes of Sprague-Dawley rats treated with 1-bromopropane (1-BrP) were investigated. Male and female rats were exposed to 50, 300, and 1800 ppm of 1-BrP per kg body weight (6 h a day,S days a week, 8 weeks) by inhalation. The mean body weight of 1-BrP treated groups increased according to the day elapsed, but four and five weeks respectively after the start of the exposure, the mean body weight of male and female rats had significantly reduced in the group treated with 1800 ppm 1-BrP compared with the control group (p<0.01). While the relative weights of liver increased in both sexes, statistical significance in both sexes was found only in the group receiving 1800 ppm/kg of 1-BrP (p<0.01). The total contents of CYP, $b_5$, NADPH-P-450 reductase, NADH $b_5$ reductase, ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-dealkylase (PROD), and p-nitrophenol hydroxylase (pNPH) activities were examined for the possible effects of 1-BrP. No significant changes in the CYP and $b_5$ contents, NADPH-P-450 reuctase, NADH $b_5$ reductase, ethoxyresorufin-O-deethylase (EROD), and pentoxyresorufin- O-dealkylase (PROD) were observed between the control and treated groups. The activity of pNPH increased steadily with the increase in the concentration of 1-BrP in both sexes, but was significantly increased only in the 1800 ppm-treated group of male rats (p<0.05). When Western blottings were carried out with three monoclonal antibodies (MAb 1-7-1, MAb 2-66-3, and MAb 1-98-1) which were specific against CYP1A1/2, CYP2B1/2, and CYP2E1, respectively, a strong signal corresponding to CYP2E1 was observed in microsomes obtained from rats treated with 1-BrP. Glutathione S-transferase (GST) activity and the content of lipid peroxide significantly increased in the treated groups compared with the control group (p<0.05). These results suggest that 1-BrP can primarily induce CYP2E1 as the major form and that GST phase II enzymes play important roles in 1-BrP metabolism, showing sex-dependence in the metabolic mechanism of 1-BrP in the rat liver.

  • PDF

Hepatotoxicity in Rats Treated with Dimethylformamide or Toluene or Both

  • Kim, Ki-Woong;Chung, Yong Hyun
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.187-193
    • /
    • 2013
  • The effects of toluene in dimethylformamide (DMF)-induced hepatotoxicity were investigated with respect to the induction of cytochrome P-450 (CYP) and the activities of related enzymes. The rats were treated intraperitoneally with the organic solvents in olive oil (Single treatment groups: 450 [D1], 900 [D2], 1,800 [D3] mg DMF, and 346 mg toluene [T] per kg of body weight; Combined treatment groups: D1+T, D2+T, and D3+T) once a day for three days, while the control group received just the olive oil. Each group consisted of 4 rats. The activities of the xenobiotic metabolic enzymes and the hepatic morphology were assessed. The immunoblots indicated that the expression of CYP2E1 was considerably enhanced depending on the dosage of DMF and the CYP2E1 blot densities were significantly increased after treatment with both DMF and toluene, compared to treatment with DMF alone. The activities of glutathione-S-transferase and glutathione peroxidase were either decreased or remained unaltered after treatment with DMF and toluene, whereas the lipid peroxide levels were increased with increasing dosage of DMF and toluene. The liver tissue in the D3 group (1,800 mg/kg of DMF) showed signs of microvacuolation in the central vein region and a large necrotic zone around the central vein, in rats treated with both DMF (1,800 mg/kg) and toluene (D3T). These results suggest that the expression of CYP2E1 is induced by DMF and enhanced by toluene. These changes may have facilitated the accelerated formation of N-methylformamide (NMF) from toluene, and the generated NMF may directly induce liver damage.

Interethnic Variations of CYP2C19 Genetic Polymorphism

  • Tassaneeyakul, Wongwiwat;Tassaneeyakul, Wichittra
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.145-155
    • /
    • 2001
  • Cytochrome P4502C19 (CYP2C19) is one of human polymorphic xenobiotic-metabolizing enzymes. The enzyme has been reported to catalyze more than 70 substrates, involving more than 100 reactions. These include several classes of therapeutic agents (e.g. anti-microbial. cardiovascular, psycho-active, etc.), sex hormones and insecticides. Associations of the CYP2C19 genotype/phenotype with individual differences in drug efficacy (e.g. diazepam, omeprazole, proguanil) and toxicity (e.g. mephenytoin, barbiturates) have been documented by many investigators. At least 11 allelic variants of CYP2C19 gene were reported to date. Most of the mutant alleles found in the poor metabolizer (PM) led to the production of truncated and/or inactive proteins. Except for the exon 6, single-nucleotide mutations were reported in all nine exons of the gene. Genetic polymorphism of CYP2C19 shows marked interethnic variation with the population frequencies of PM phenotype ranging from 1∼2% up to more than 50%. The prevalence of CYP2C19 PM tends to be higher in Asian and certain Pacific Islanders than other race or ethnic specificity. Genotyping results of CYP2C19 also revealed that there are different proportions of individual mutant alleles among ethnic populations. This may, in part, explains the interethnic difference in the metabolism of certain drugs (i.e. diazepam), though they were from the same CYP2C19 phenotype. Recently, our research group has studied the genotype and phenotype of CYP2C19 and found that the PM frequency (7∼8%) in Thais is lower than other Asian populations. Molecular and clinical impacts of this finding warrant to further investigation.

  • PDF