• Title/Summary/Keyword: damage detection

Search Result 642, Processing Time 0.098 seconds

Vibration-based damage detection in beams using genetic algorithm

  • Kim, Jeong-Tae;Park, Jae-Hyung;Yoon, Han-Sam;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.263-280
    • /
    • 2007
  • In this paper, an improved GA-based damage detection algorithm using a set of combined modal features is proposed. Firstly, a new GA-based damage detection algorithm is formulated for beam-type structures. A schematic of the GA-based damage detection algorithm is designed and objective functions using several modal features are selected for the algorithm. Secondly, experimental modal tests are performed on free-free beams. Modal features such as natural frequency, mode shape, and modal strain energy are experimentally measured before and after damage in the test beams. Finally, damage detection exercises are performed on the test beam to evaluate the feasibility of the proposed method. Experimental results show that the damage detection is the most accurate when frequency changes combined with modal strain-energy changes are used as the modal features for the proposed method.

Statistics based localized damage detection using vibration response

  • Dorvash, Siavash;Pakzad, Shamim N.;LaCrosse, Elizabeth L.
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.85-104
    • /
    • 2014
  • Damage detection is a challenging, complex, and at the same time very important research topic in civil engineering. Identifying the location and severity of damage in a structure, as well as the global effects of local damage on the performance of the structure are fundamental elements of damage detection algorithms. Local damage detection is essential for structural health monitoring since local damages can propagate and become detrimental to the functionality of the entire structure. Existing studies present several methods which utilize sensor data, and track global changes in the structure. The challenging issue for these methods is to be sensitive enough in identifYing local damage. Autoregressive models with exogenous terms (ARX) are a popular class of modeling approaches which are the basis for a large group of local damage detection algorithms. This study presents an algorithm, called Influence-based Damage Detection Algorithm (IDDA), which is developed for identification of local damage based on regression of the vibration responses. The formulation of the algorithm and the post-processing statistical framework is presented and its performance is validated through implementation on an experimental beam-column connection which is instrumented by dense-clustered wired and wireless sensor networks. While implementing the algorithm, two different sensor networks with different sensing qualities are utilized and the results are compared. Based on the comparison of the results, the effect of sensor noise on the performance of the proposed algorithm is observed and discussed in this paper.

Damage Detection in Highway Bridges Via Changes in Modal Parameters (진동특성치의 변화를 통한 교량의 손상발견)

  • Kim, Jeong-Tae;Ryu, Yeon-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.87-94
    • /
    • 1995
  • In highway bridges robust damage detection exercises are mandatory to secure the safety of the structures from hostile environmental conditions such as fatigue earthquake, wind, and corrosion. This paper presents a damage detection practice in a full-scale highway bridge by utilizing modal response parameters of as-built and damaged states of the structure. first the test structure is described and modal testing procedures are outlined. Next, a damage detection model which yields information on the location of damage directly from changes in mode shapes is outlined. Finally, the damage detection model is implemented to predict the location of damage in the ten structure. From the results, it was found that the damage detection model accurately locates damage in the test structures for which modal parameters of only a single mode are available for pre-damage (as-built) and post-damage stages.

  • PDF

Nonlinear damage detection using higher statistical moments of structural responses

  • Yu, Ling;Zhu, Jun-Hua
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.221-237
    • /
    • 2015
  • An integrated method is proposed for structural nonlinear damage detection based on time series analysis and the higher statistical moments of structural responses in this study. It combines the time series analysis, the higher statistical moments of AR model residual errors and the fuzzy c-means (FCM) clustering techniques. A few comprehensive damage indexes are developed in the arithmetic and geometric mean of the higher statistical moments, and are classified by using the FCM clustering method to achieve nonlinear damage detection. A series of the measured response data, downloaded from the web site of the Los Alamos National Laboratory (LANL) USA, from a three-storey building structure considering the environmental variety as well as different nonlinear damage cases, are analyzed and used to assess the performance of the new nonlinear damage detection method. The effectiveness and robustness of the new proposed method are finally analyzed and concluded.

Numerical evaluation for vibration-based damage detection in wind turbine tower structure

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.657-675
    • /
    • 2015
  • In this study, the feasibility of vibration-based damage detection methods for the wind turbine tower (WTT) structure is evaluated. First, a frequency-based damage detection (FBDD) is outlined. A damage-localization algorithm is visited to locate damage from changes in natural frequencies. Second, a mode-shape-based damage detection (MBDD) method is outlined. A damage index algorithm is utilized to localize damage from estimating changes in modal strain energies. Third, a finite element (FE) model based on a real WTT is established by using commercial software, Midas FEA. Several damage scenarios are numerically simulated in the FE model of the WTT. Finally, both FBDD and MBDD methods are employed to identify the damage scenarios simulated in the WTT. Damage regions are chosen close to the bolt connection of WTT segments; from there, the stiffness of damage elements are reduced.

A direct damage detection method using Multiple Damage Localization Index Based on Mode Shapes criterion

  • Homaei, F.;Shojaee, S.;Amiri, G. Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.183-202
    • /
    • 2014
  • A new method of multiple damage detection in beam like structures is introduced. The mode shapes of both healthy and damaged structures are used in damage detection process (DDP). Multiple Damage Localization Index Based on Mode Shapes (MDLIBMS) is presented as a criterion in detecting damaged elements. A finite element modeling of structures is used to calculate the mode shapes parameters. The main advantages of the proposed method are its simplicity, flexibility on the number of elements and so the accuracy of the damage(s) position(s), sensitivity to small damage extend, capability in prediction of required number of mode shapes and low sensitivity to noisy data. In fact, because of differential and comparative form of MDLIBMS, using noise polluted data doesn't have major effect on the results. This makes the proposed method a powerful one in damage detection according to measured mode shape data. Because of its flexibility, damage detection process in multi span bridge girders with non-prismatic sections can be done by this method. Numerical simulations used to demonstrate these advantages.

Optimal sensor placement for bridge damage detection using deflection influence line

  • Liu, Chengyin;Teng, Jun;Peng, Zhen
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.169-181
    • /
    • 2020
  • Sensor placement is a crucial aspect of bridge health monitoring (BHM) dedicated to accurately estimate and locate structural damages. In addressing this goal, a sensor placement framework based on the deflection influence line (DIL) analysis is here proposed, for the optimal design of damage detection-oriented BHM system. In order to improve damage detection accuracy, we explore the change of global stiffness matrix, damage coefficient matrix and DIL vector caused by structural damage, and thus develop a novel sensor placement framework based on the Fisher information matrix. Our approach seeks to determine the contribution of each sensing node to damage detection, and adopts a distance correction coefficient to eliminate the information redundancy among sensors. The proposed damage detection-oriented optimal sensor placement (OSP) method is verified by two examples: (1) a numerically simulated three-span continuous beam, and (2) the Pinghu bridge which has existing real damage conditions. These two examples verify the performance of the distance corrected damage sensitivity of influence line (DSIL) method in significantly higher contribution to damage detection and lower information redundancy, and demonstrate the proposed OSP framework can be potentially employed in BHM practices.

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

Influence of higher order modes and mass configuration on the quality of damage detection via DWT

  • Vafaei, Mohammadreza;Alih, Sophia C
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1221-1232
    • /
    • 2015
  • In recent decades, wavelet transforms as a strong signal processing tool have attracted attention of researchers for damage identification. Apart from the wide application of wavelet transforms for damage identification, influence of higher order modes on the quality of damage detection has been a challenging matter for researchers. In this study, influence of higher order modes and different mass configurations on the quality of damage detection through Discrete Wavelet Transform (DWT) was studied. Nine different damage scenarios were imposed to four cantilever structures having different mass configurations. The first four mode shapes of the cantilever structures were measured experimentally and analyzed by DWT. A damage index was defined in order to study the influence of higher order modes. Results of this study showed that change in the mass configuration had a great impact on the quality of damage detection even when the changes altered natural frequencies slightly. It was observed that for successful damage detection all available mode shapes should be taken into account and measured mode shapes had no significant priority for damage detection over each other.

A novel transmissibility concept based on wavelet transform for structural damage detection

  • Fan, Zhe;Feng, Xin;Zhou, Jing
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.291-308
    • /
    • 2013
  • A novel concept of transmissibility based on a wavelet transform for structural damage detection is presented in this paper. The main objective of the research was the development of a method for detecting slight damage at the incipient stage. As a vibration-based approach, the concept of transmissibility has attracted considerable interest because of its advantages and effectiveness in damage detection. However, like other vibration-based methods, transmissibility-based approaches suffer from insensitivity to slight local damage because of the regularity of the traditional Fourier transform. Therefore, the powerful signal processing techniques must be found to solve this problem. Wavelet transform that is able to capture subtle information in measured signals has received extensive attention in the field of damage detection in recent decades. In this paper, we first propose a novel transmissibility concept based on the wavelet transform. Outlier analysis was adopted to construct a damage detection algorithm with wavelet-based transmissibility. The feasibility of the proposed method was numerically investigated with a typical six-degrees-of-freedom spring-mass system, and comparative investigations were performed with a conventional transmissibility approach. The results demonstrate that the proposed transmissibility is more sensitive than conventional transmissibility, and the former is a promising tool for structural damage detection at the incipient stage.