• Title/Summary/Keyword: damage state

검색결과 1,375건 처리시간 0.027초

보 구조물에 대한 손상검출기법의 실험적 검증 (Experimental Verification of a Structural Damage Identification Method for Beam Structures)

  • 조국래;이우식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.837-840
    • /
    • 1997
  • This paper provides an experimental verification of an FRF-based structural damage identification method (SDIM) developed by the authors for beam structures. The FRF-based SDIM requires the following data : (1) natural frequencies and mode shapes measured at the intact state and (2) the FRF-data measured at the damaged state. Experiments are conducted for the cantilevered beam with one slot and three slots. It is shown that the FRF-based SDIM developed by the authors provide very successful damage identification results which agree well with true damage state.

  • PDF

볼 베어링 손상 예측진단 방법 (Prognostic Technique for Ball Bearing Damage)

  • 이도환;김양석
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1315-1321
    • /
    • 2013
  • 볼 베어링의 손상 상태를 예측하기 위한 방법을 본 논문에서 제시하였다. 손상 진전율을 추정하기 위해 확률적 베어링 피로 결함 진전 모델을 적용하고 잡음이 포함된 가속도 신호의 RMS 데이터를 이용하여 손상 상태와 고장 시간을 계산하였다. 확률적 결함 진전 모델의 파라미터는 볼 베어링에 대한 일련의 Run-to-Failure 시험을 수행하여 결정하였다. 가속도 RMS값으로부터 손상 진전율과 손상 상태를 추정하기 위해 규칙화된 파티클 필터 추정 방법을 적용하였다. 미래 시점에서의 손상 상태는 최근 측정된 데이터와 직전에 추정된 상태값을 이용하여 예측하였다. 예측된 손상 상태와 시험 데이터와 비교하여 개발된 방법의 적절성을 확인하였다.

Damage localization and quantification in beams from slope discontinuities in static deflections

  • Ma, Qiaoyu;Solis, Mario
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.291-302
    • /
    • 2018
  • This paper presents a flexibility based method for damage identification from static measurements in beam-type structures. The response of the beam at the Damaged State is decomposed into the response at the Reference State plus the response at an Incremental State, which represents the effect of damage. The damage is localized by detecting slope discontinuities in the deflection of the structure at the Incremental State. A denoising filtering technique is applied to reduce the effect of experimental noise. The extent of the damage is estimated through comparing the experimental flexural stiffness of the damaged cross-sections with the corresponding values provided by analytical models of cracked beams. The paper illustrates the method by showing a numerical example with two cracks and an experimental case study of a simply supported steel beam with one artificially introduced notch type crack at three damage levels. A Digital Image Correlation system was used to accurately measure the deflections of the beam at a dense measurement grid under a set of point loads. The results indicate that the method can successfully detect and quantify a small damage from the experimental data.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

A statistical framework with stiffness proportional damage sensitive features for structural health monitoring

  • Balsamo, Luciana;Mukhopadhyay, Suparno;Betti, Raimondo
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.699-715
    • /
    • 2015
  • A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is performed in a statistical pattern recognition framework using empirical complementary cumulative distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. Methods are discussed to perform probabilistic structural health assessment with respect to the following questions: (a) "Is there a change in the current state of the structure compared to the baseline state?", (b) "Does the change indicate a localized stiffness reduction or increase?", with the latter representing a situation of retrofitting operations, and (c) "What is the severity of the change in a probabilistic sense?". To identify a range of normal structural variations due to environmental and operational conditions, lower and upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple "non-damage" related variations from damage induced changes, and account for the unknown environmental/operational conditions of the current state. The damage assessment procedure is discussed using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table experimental data from a 4-story steel frame.

Self-healing capacity of damaged rock salt with different initial damage

  • Chen, Jie;Kang, Yanfei;Liu, Wei;Fan, Jinyang;Jiang, Deyi;Chemenda, Alexandre
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.615-620
    • /
    • 2018
  • In order to analyze the healing effectiveness of rock salt cracks affected by the applied stresses and time, we used the ultrasonic technology to monitor the ultrasonic pulse velocity (UPV) variations for different initial stress-damaged rock salts during self-healing experiments. The self-healing experiments were to create different conditions to improve the microcracks closure or recrystallized, which the self-healing effect of damaged salt specimens were analyzed during the recovery period about 30 days. We found that: The ultrasonic pulse velocity of the damaged rock salts increases rapidly during the first 9 days recovery, and the values gradually increase to reach constant values after 30 days. The damaged value and the healed value were identified based on the variation of the wave velocity. The damaged values of the specimens that are subject to higher initial damage stress are still keeping in large after 30 days recovery under the same recovery condition It is interesting that the damage and the healing were not in the linear relationship, and there also existed a damage threshold for salt cracks healing ability. When the damage degree is less than the threshold, the self-healing ratio of rock salt is increased with the increase in damage degree. However, while the damage degree exceeds the threshold, the self-healing ratio is decreased with the increase in damage.

보 구조물에 대한 손상규명기법의 실험적 검증 (Experimental Verification of the Structural Damage Identification Method Developed for Beam Structures)

  • 조국래;신진호;이우식
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2574-2580
    • /
    • 2002
  • In this paper, an experimental verification has been conducted for the frequency response function (FRF)-based structural damage identification method (SDIM) proposed for beam structures. The FRF-based SDIM requires the natural frequencies and mode shapes measured in the intact state and the FRF-data measured in the damaged state. Experiments are conducted for the cantilevered beam specimens with one slot and with three slots. It is shown that the proposed FRF-based SDIM provides damage identification results that agree quite well with true damage state.

철근콘크리트 기둥의 내진성능 및 공학적 손상상태에 대한 실험적 평가 (Experimental Evaluation of the Seismic Performance and Engineering Damage State of Reinforced Concrete Columns)

  • 이도형
    • 한국지진공학회논문집
    • /
    • 제27권2호
    • /
    • pp.119-127
    • /
    • 2023
  • In this paper, seismic performance evaluation was carried out for eight circular reinforced concrete columns designed seismically by KRTA[1]and KCI[8]. Primary design parameters for such columns included many longitudinal reinforcements, yield strength of reinforcements, the vertical spacing of spirals, aspect ratio, and axial force ratio. The test results showed that all the columns exhibited stable hysteretic and inelastic responses. Based on the test results, drift ratios corresponding to each damage state, such as initial yielding, initial cover spalling, initial core concrete crushing, buckling, and fracture of longitudinal reinforcement and final spalled region, were evaluated. Then, those ratios were compared with widely accepted damage limit states. The comparison revealed that the existing damage states were considerably conservative. This implies that additional research is required for the damage limit states of such columns designed seismically by current Korean design codes.

Lamb wave-based damage imaging method for damage detection of rectangular composite plates

  • Qiao, Pizhong;Fan, Wei
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.411-425
    • /
    • 2014
  • A relatively low frequency Lamb wave-based damage identification method called damage imaging method for rectangular composite plate is presented. A damage index (DI) is generated from the delay matrix of the Lamb wave response signals, and it is used to indicate the location and approximate area of the damage. The viability of this method is demonstrated by analyzing the numerical and experimental Lamb wave response signals from rectangular composite plates. The technique only requires the response signals from the plate after damage, and it is capable of performing near real time damage identification. This study sheds some light on the application of Lamb wave-based damage detection algorithm for plate-type structures by using the relatively low frequency (e.g., in the neighborhood of 100 kHz, more suitable for the best capability of the existing fiber optic sensor interrogator system with the sampling frequency of 500 kHz) Lamb wave response and a reference-free damage detection technique.

A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies

  • Lei, Ying;Chen, Feng;Zhou, Huan
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.57-80
    • /
    • 2015
  • Extended Kalman Filter (EKF) has been widely used for structural identification and damage detection. However, conventional EKF approaches require that external excitations are measured. Also, in the conventional EKF, unknown structural parameters are included as an augmented vector in forming the extended state vector. Hence the sizes of extended state vector and state equation are quite large, which suffers from not only large computational effort but also convergence problem for the identification of a large number of unknown parameters. Moreover, such approaches are not suitable for intelligent structural damage detection due to the limited computational power and storage capacities of smart sensors. In this paper, a two-stage and two-step algorithm is proposed for the identification of structural damage as well as unknown external excitations. In stage-one, structural state vector and unknown structural parameters are recursively estimated in a two-step Kalman estimator approach. Then, the unknown external excitations are estimated sequentially by least-squares estimation in stage-two. Therefore, the number of unknown variables to be estimated in each step is reduced and the identification of structural system and unknown excitation are conducted sequentially, which simplify the identification problem and reduces computational efforts significantly. Both numerical simulation examples and lab experimental tests are used to validate the proposed algorithm for the identification of structural damage as well as unknown excitations for structural health monitoring.